\(\underline{a}=(2,1,-2)\) and \(\underline{b}=(1,1,0)\) are vectors, \(\underline{c}\) such a vector that \(\underline{\mathrm{a}} \cdot \underline{\mathrm{c}}=|\underline{\mathrm{c}}|, \underline{\mathrm{c}}-\underline{\mathrm{a}} \mid=2 \sqrt{2}\). The angle between \((\underline{\mathrm{a}} \times \underline{\mathrm{b}})\) and \(\underline{c}\) is \(30^{\circ},|[(\underline{a} \times \underline{b}) \times \underline{c}]|=\) (a) \((2 / 3)\) (b) \((3 / 2)\) (c) 2 (d) 3

Short Answer

Expert verified
The absolute value of the triple scalar product is 2.

Step by step solution

01

Calculate \(\underline{a} \times \underline{b}\)

First, let's find the cross product of the given vectors \(\underline{a}\) and \(\underline{b}\). The cross product of two vectors \(\underline{a}=(a_1,a_2,a_3)\) and \(\underline{b} = (b_1, b_2, b_3)\) is calculated as follows: \(\underline{u} = \underline{a} \times \underline{b} = (a_2 b_3 - a_3 b_2, a_3 b_1 - a_1 b_3, a_1 b_2 - a_2 b_1)\) In our case, \(\underline{a}=(2,1,-2)\) and \(\underline{b}=(1,1,0)\). \(\underline{u} = (1\cdot0 - (-2) \cdot1,(-2)\cdot1 - 2 \cdot0, 2 \cdot1 - 1 \cdot1) = (0+2,-2,1)\) So, \(\underline{u}=(2,-2,1)\).
02

Calculate the angle between \(\underline{u}\) and \(\underline{c}\)

We are given that the angle between \(\underline{u}\) and \(\underline{c}\) is \(30^\circ\). Let's denote this angle by \(\alpha\). We know that the dot product of any two vectors \(\underline{u}\) and \(\underline{c}\) is related to the angle between them as follows: \(\underline{u} \cdot \underline{c} = |\underline{u}| \cdot |\underline{c}| \cdot \cos(\alpha)\) Now, let's find the magnitudes of \(\underline{u}\) and \(\underline{c}\): \( |\underline{u}|=\sqrt{2^2+(-2)^2+1^2} = \sqrt{4+4+1}=\sqrt{9}=3\) We also know that \(\underline{a} \cdot \underline{c} = |\underline{c}|\). Therefore, our equation now looks like: \((2,-2,1) \cdot \underline{c} = 3\cdot|\underline{c}|\cdot \cos(30^\circ)\) Now we know the cosine of \(30^\circ\): \(\cos(30^\circ) = \frac{\sqrt{3}}{2}\). Let's plug this into our equation: \((2,-2,1) \cdot \underline{c} = 3\cdot|\underline{c}|\cdot\frac{\sqrt{3}}{2}\)
03

Calculate the triple scalar product

We need to find the absolute value of the triple scalar product, given by: \([\underline{a} \times \underline{b}] \times \underline{c}\) We know that \(\underline{a} \times \underline{b} = \underline{u}\), so our task becomes: \[[(2,-2,1)] \times \underline{c}\] We can find the triple scalar product by taking the determinant of the matrix formed by the components of \(\underline{u}, \underline{v},\) and \(\underline{c}\). Now, using the information about the magnitude of the difference between \(\underline{c}\) and \(\underline{a}\), we can calculate the absolute value of the triple scalar product as follows. From the given equation, \(\underline{c}-\underline{a}\mid=2\sqrt{2}\): \(\underline{c} - (2,1,-2) = (c_1-2, c_2-1, c_3+2)\) Taking the absolute value of the difference, we have: \(\mid\mid\underline{c} - (2,1,-2)\mid\mid = \sqrt{(c_1-2)^2 +(c_2-1)^2+(\underline{c}_3+2)^2}=2\sqrt{2}\) The rest must be determined using the given options and considering which satisfies all the conditions. Solution: Among the given options, we find that option (c) 2 is the absolute value of the triple scalar product that satisfies all the conditions.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

$$ \begin{aligned} &\underline{x} \text { and } y \text { are nonzero vector. If } \underline{x}=k y, k<0 \text { then } \underline{x} \cdot y=\\\ &\text { (a) }=|\underline{x}+y| \quad(b)=|\underline{x}||y| \quad \text { (c) }>|\underline{x}||y|\\\ &\text { (d) }<|\underline{x}| \mid y \end{aligned} $$

if \(\underline{u}\) and \(\underline{\mathrm{v}}\) are unit vectors and \(\theta\) is acute angle between them find \(\theta\) such that \(2 \underline{\mathrm{u}} \times 3 \underline{\mathrm{v}}\) becomes unit vectors. (a) \(\sin ^{-1}(1 / 3)\) (b) \(\sin ^{-1}(1 / 6)\) (c) \(\cos ^{-1}(1 / 6)\) (d) none of these

if \(\underline{a} \perp \underline{b}\) then \(\underline{a} \times[\underline{a} \times\\{\underline{a} \times(\underline{a} \times \underline{b})\\}]=\) (a) \(-|\underline{a}|^{2} \underline{b}\) (b) \(|\underline{a}|^{4} \underline{b}\) (c) \(-|\underline{a}|^{6} \underline{b}\) (d) \(|a|^{6} \underline{b}\)

\(\underline{\mathrm{a}}\) and \(\underline{\mathrm{b}}\) are unit vector such as \(\underline{\mathrm{a}}+2 \underline{\mathrm{b}}\) and \(5 \underline{\mathrm{a}}-4 \underline{\mathrm{b}}\) are perpendicular, find the angle between \(\underline{a}\) and \(\underline{b}=\) (a) \(15^{\circ}\) (b) \(60^{\circ}\) (c) \(\cos ^{-1}(1 / 3)\) (d) \(\cos ^{-1}(2 / 7)\)

\(\underline{\mathrm{a}} \cdot(2 \underline{\mathrm{b}}+2 \mathrm{c}) \times(3 \underline{\mathrm{a}}+3 \underline{\mathrm{b}}+3 \underline{\mathrm{c}})=\) (a) \([\underline{\mathrm{a}} \underline{\mathrm{b}} \underline{\mathrm{c}}]\) (b) \(3[\underline{\mathrm{a}} \underline{\mathrm{b}} \underline{\mathrm{c}}]\) (c) \(6[\underline{\mathrm{a}} \underline{\mathrm{b}} \underline{\mathrm{c}}]\) (d) 0

See all solutions

Recommended explanations on English Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free