\(\underline{a} \cdot[(\underline{b}+\underline{c}) \times(\underline{a}+\underline{b}+\underline{c})]=\) (a) 0 (b) \([\underline{a} \underline{b} \underline{c}]+[\underline{b} \underline{c} \underline{a}]\) (c) \([\underline{\mathrm{a}} \underline{\mathrm{b}} \underline{\mathrm{c}}]\) (d) none of these.

Short Answer

Expert verified
#tag_title# Step 2: Simplify the cross products #tag_content# Now, we will simplify the cross products in the expression: 1. For the first cross product, we have: \[ (\underline{b}+\underline{c}) \times \underline{a} = \underline{b} \times \underline{a} + \underline{c} \times \underline{a} \] 2. For the second cross product, we have: \[ (\underline{b}+\underline{c}) \times (\underline{b}+\underline{c}) = \underline{b} \times \underline{b} + \underline{b} \times \underline{c} + \underline{c} \times \underline{b} + \underline{c} \times \underline{c} \] Since the cross product of a vector with itself is always 0, the expression becomes: \[ (\underline{b}+\underline{c}) \times (\underline{b}+\underline{c}) = \underline{b} \times \underline{c} + \underline{c} \times \underline{b} \] #tag_title# Step 3: Combine the scalar products #tag_content# Now we will substitute from steps 1 and 2 back into the original expression, and simplify it using the distributive property of the scalar product: \[ \underline{a} \cdot[(\underline{b}+\underline{c}) \times (\underline{a}+\underline{b}+\underline{c})] = \underline{a} \cdot[\underline{b} \times \underline{a} + \underline{c} \times \underline{a}] + \underline{a} \cdot[\underline{b} \times \underline{c} + \underline{c} \times \underline{b}] \] Applying the distributive property, we get: \[ \underline{a} \cdot[(\underline{b}+\underline{c}) \times (\underline{a}+\underline{b}+\underline{c})] = \underline{a} \cdot (\underline{b} \times \underline{a}) + \underline{a} \cdot (\underline{c} \times \underline{a}) + \underline{a} \cdot(\underline{b} \times \underline{c}) + \underline{a} \cdot (\underline{c} \times \underline{b}) \] #tag_title# Step 4: Compare with the given options #tag_content# Comparing this expression with the given options: (a) 0 (b) \([\underline{a}\underline{b}\underline{c}]+[\underline{b}\underline{c}\underline{a}]\) (c) \([\underline{a}\underline{b}\underline{c}]\) (d) None of these It does not match any of the options. So, the answer is (d) None of these.

Step by step solution

01

Distribute the scalar product

We are given the expression \(\underline{a} \cdot[(\underline{b}+\underline{c}) \times (\underline{a}+\underline{b}+\underline{c})]\). First, we will distribute the scalar \(\underline{a}\) over the cross product of \((\underline{b}+\underline{c})\) and \((\underline{a}+\underline{b}+\underline{c})\): \[ \underline{a} \cdot[(\underline{b}+\underline{c}) \times (\underline{a}+\underline{b}+\underline{c})] = \underline{a} \cdot[(\underline{b}+\underline{c}) \times \underline{a}] + \underline{a} \cdot[(\underline{b}+\underline{c}) \times (\underline{b}+\underline{c})] \]

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

\(\underline{\mathrm{a}}\) and \(\underline{\mathrm{b}}\) are unit vector such as \(\underline{\mathrm{a}}+2 \underline{\mathrm{b}}\) and \(5 \underline{\mathrm{a}}-4 \underline{\mathrm{b}}\) are perpendicular, find the angle between \(\underline{a}\) and \(\underline{b}=\) (a) \(15^{\circ}\) (b) \(60^{\circ}\) (c) \(\cos ^{-1}(1 / 3)\) (d) \(\cos ^{-1}(2 / 7)\)

\((\underline{\mathrm{A}} \times \underline{\mathrm{B}}) \cdot[(\underline{\mathrm{B}} \times \underline{\mathrm{C}}) \times(\underline{\mathrm{C}} \times \underline{\mathrm{A}})]=\) (a) \([\underline{\mathrm{A}} \underline{\mathrm{B}} \underline{\mathrm{C}}]^{2}\) (b) \(2 \underline{\mathrm{A}} \cdot(\underline{\mathrm{B}} \times \underline{\mathrm{C}})\) (c) \((\underline{\mathrm{B}} \times \underline{\mathrm{C}}) \cdot[\underline{\mathrm{C}} \times \underline{\mathrm{A}}+\underline{\mathrm{A}} \times \underline{\mathrm{B}}]\) (d) none of these

\(\underline{\mathrm{a}}=(3,-5,0), \underline{\mathrm{b}}=(6,3,0)\) and \(\underline{\mathrm{c}}=\underline{\mathrm{a}} \times \underline{\mathrm{b}}\) then \(|\underline{\mathrm{a}}|:|\underline{\mathrm{b}}|:|\underline{\mathrm{c}}|=\) (a) \(\sqrt{3} 4: \sqrt{45} \overline{: \sqrt{3} 9}\) (b) \(\sqrt{34: \sqrt{4} 5: 39}\) (c) \(34: 39: 45\) (d) \(39: 35: 34\)

if \(\underline{a}\) and \(\underline{b}\) are vector and \(\underline{a} \cdot \underline{b}<0,|\underline{a} \cdot \underline{b}|=|\underline{a} \times \underline{b}|\) then angle between \(\underline{a}\) and \(\underline{b}\) is = (a) \(\pi\) (b) \((7 \pi / 4)\) (c) \((\pi / 4)\) (d) \((3 \pi / 4)\)

if \(\underline{\mathrm{a}}, \underline{\mathrm{b}}\) and \(\underline{\mathrm{c}}\) are non coplanar unit vectors such that \(\underline{a} \times(\underline{b} \times \underline{c})=(1 / \sqrt{2})(\underline{b}+\underline{c})\) and \(\left(\underline{a}^{\wedge} \underline{b}\right)=\alpha,\left(\underline{a}^{\wedge} \underline{c}\right)=\beta\) then \(\alpha=\beta=\) (a) \((\pi / 4) ; \overline{(3 \pi / 4)}\) (b) \((3 \pi / 4) ;(\pi / 4)\) (c) \((\pi / 4) ;(7 \pi / 4)\) (d) \((7 \pi / 4) ;(\pi / 4)\)

See all solutions

Recommended explanations on English Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free