if the vectors \(\underline{a}\) and \(\underline{b}\) such that \(|\underline{\mathrm{a}}+\underline{\mathrm{b}}|<|\underline{\mathrm{a}}-\underline{\mathrm{b}}|\) the angle between \(\underline{a}\) and \(\underline{b}\) is. (a) acute (b) right angle (c) obtuse (d) none of these.

Short Answer

Expert verified
(c) obtuse

Step by step solution

01

Apply the Triangle Inequality Theorem

We will square both sides of the given inequality to remove the absolute value sign: \( ( | \underline{a} + \underline{b} | )^2 < ( | \underline{a} - \underline{b} | )^2 \). Now, apply the triangle inequality theorem, which states that the square of the magnitude of the sum of two vectors equals the sum of the squares of their magnitudes plus two times the product of their magnitudes and the cosine of the angle between them: \( | \underline{a} + \underline{b} |^2 = |\underline{a}|^2 + |\underline{b}|^2 + 2 |\underline{a}| |\underline{b}| \cos\theta \). Similarly, for \( | \underline{a} - \underline{b} |^2 \), we have \( | \underline{a} - \underline{b} |^2 = |\underline{a}|^2 + |\underline{b}|^2 - 2 |\underline{a}| |\underline{b}| \cos\theta \).
02

Substitute the expressions

Substitute the expressions obtained in step 1 into the inequality: \( |\underline{a}|^2 + |\underline{b}|^2 + 2 |\underline{a}| |\underline{b}| \cos\theta < |\underline{a}|^2 + |\underline{b}|^2 - 2 |\underline{a}| |\underline{b}| \cos\theta \).
03

Simplify the inequality

Now, cancel the common terms on both sides: \( 2 |\underline{a}| |\underline{b}| \cos\theta < - 2 |\underline{a}| |\underline{b}| \cos\theta \). Divide both sides by \( 2 |\underline{a}| |\underline{b}| \): \( \cos\theta < - \cos\theta \).
04

Conclude the angle

From \( \cos\theta < - \cos\theta \), we can conclude that the angle θ between vectors \( \underline{a} \) and \( \underline{b} \) must be obtuse since the cosine of an obtuse angle is negative, and the inequality states that \( \cos\theta \) must be less than a negative value. Therefore, the correct answer is: (c) obtuse

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

\((\underline{\mathrm{A}} \times \underline{\mathrm{B}}) \cdot[(\underline{\mathrm{B}} \times \underline{\mathrm{C}}) \times(\underline{\mathrm{C}} \times \underline{\mathrm{A}})]=\) (a) \([\underline{\mathrm{A}} \underline{\mathrm{B}} \underline{\mathrm{C}}]^{2}\) (b) \(2 \underline{\mathrm{A}} \cdot(\underline{\mathrm{B}} \times \underline{\mathrm{C}})\) (c) \((\underline{\mathrm{B}} \times \underline{\mathrm{C}}) \cdot[\underline{\mathrm{C}} \times \underline{\mathrm{A}}+\underline{\mathrm{A}} \times \underline{\mathrm{B}}]\) (d) none of these

\(\underline{a}=(2,-3,6)\) and \(\underline{b}=(-2,2,-1) .\) if \(\lambda=\) projection of a over \(\underline{b} /\) projection of \(\underline{b}\) over \(\underline{a}\). then \(\lambda=\) (a) \(\overline{(3 / 7)}\) (b) 7 (c) 3 (d) \((7 / 3)\)

if the angle between \(\underline{\mathrm{a}}=(2,-\mathrm{m}, 3 \mathrm{~m})\) and \(\underline{\mathrm{b}}=(1+\mathrm{m},-2 \mathrm{~m}, 1)\) is acute then \(\mathrm{m}=\) (a) \(\mathrm{m} \in \mathrm{R}\) (b) \(\mathrm{m} \in \overline{(-\infty,}-2) \cup[-(1 / 2), \infty]\) (c) \(\mathrm{m}=-(1 / 2)\) (d) \(m \in[-2,-(1 / 2)]\)

\(\underline{\mathrm{i}} \times(\underline{\mathrm{x}} \times \mathrm{i})+\mathrm{j} \times(\underline{\mathrm{x}} \times \mathrm{j})+\underline{\mathrm{k}} \times(\underline{\mathrm{x}} \times \underline{\mathrm{k}})=\) (a) \(\underline{x}\) (b) \(2 \underline{x}\) (c) \(3 x\) (d) 0

if \(2 \underline{\mathrm{i}}+4 \mathrm{j}-5 \underline{\mathrm{k}}\) and \(\underline{\mathrm{i}}+2 \mathrm{j}+3 \underline{\mathrm{k}}\) is two different sides of rhombus, find the length of diagonals = (a) \(7, \sqrt{69}\) (b) \(6, \sqrt{5} 9\) (c) \(5, \sqrt{65}\) (d) \(8, \sqrt{45}\)

See all solutions

Recommended explanations on English Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free