\(\mathrm{A}\) s position vector is \(\underline{\mathrm{a}}+2 \underline{\mathrm{b}} \mathrm{P}\) s position vector is \(\mathrm{a} \cdot \mathrm{P}\) is division point of \(\underline{A B}\) from \(A\) in the ratio \(2: 3\).find \(B\) s position vector is (a) \(2 \underline{a}-\underline{b}\) (b) \(\underline{b}-2 \underline{a}\) (c) \(\underline{a}-3 \underline{b}\) (d) \(\underline{b}\)

Short Answer

Expert verified
The solution cannot be matched to the given options, as there might be a mistake in the given position vector for point P. Without further clarification, the solution cannot be determined.

Step by step solution

01

Recall the Section Formula

When a point P divides a line segment with endpoints A and B in ratio m:n, the position vector of point P can be expressed using the section formula: \(\underline{p}= \frac{m\underline{b} + n\underline{a}}{m+n}\) In this exercise, point P divides line segment AB in the ratio 2:3, so we can write: \(\underline{p}= \frac{2\underline{b} + 3\underline{a}}{2+3}\)
02

Plug in given values and solve for \(\underline{b}\)

We are given that the position vector of point A is \(\underline{a} + 2\underline{b}\) and the position vector of point P is \(\underline{a}\cdot \underline{p}\). Plug these values into the section formula: \(\underline{a}\cdot \underline{p} = \frac{2\underline{b} + 3(\underline{a} + 2\underline{b})}{2+3}\) Now, solve the equation for \(\underline{b}\): \(\underline{a}\cdot \underline{p} = \frac{2\underline{b} + 3\underline{a} + 6\underline{b}}{5}\) \(\underline{a}\cdot \underline{p} = \frac{8\underline{b} + 3\underline{a}}{5}\) Multiply both sides by 5: \(5\underline{a}\cdot \underline{p} = 8\underline{b} + 3\underline{a}\) Subtract 3 \(\underline{a}\) from both sides: \(2\underline{a}\cdot \underline{p} = 8\underline{b}\) Divide both sides by 8: \(\frac{2}{8}\underline{a}\cdot \underline{p} = \underline{b}\) \(\frac{1}{4}\underline{a}\cdot \underline{p} = \underline{b}\) This solution does not match any of the options in the exercise. There might be a mistake in the given position vector for point P, since it is unclear how the dot product is used in the given expression. Without further clarification, the solution cannot be matched to the given options.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

\(\underline{\mathrm{a}}\) and \(\underline{\mathrm{b}}\) non coplanar. \(2 \underline{\mathrm{u}}-\underline{\mathrm{v}}=\underline{\mathrm{w}}\), if \(\underline{\mathrm{u}}=\mathrm{x} \underline{\mathrm{a}}+2 \mathrm{y} \underline{\mathrm{b}}\), \(\underline{v}=-2 y \underline{a}+3 x \underline{b}\) and \(\underline{w}=4 \underline{a}-2 \underline{b}\), find \(x\) and \(y=\) (a) \(\mathrm{x}=(8 / 7), \mathrm{y}=(2 / 7)\) (b) \(x=2, y=3\) (c) \(\mathrm{x}=(4 / 7), \mathrm{y}=(6 / 7)\) (d) \(x=(10 / 7), y=(4 / 7)\)

a force \(\underline{F}=(2,1,-1)\) act on a practical and displaces it from the point \(\mathrm{A}(2,-1,0)\) to the point \(\mathrm{B}(2,1,0)\) then work done by force is equal to (a) 2 (b) 4 (c) 6 (d) 5

vector \(\underline{b}=(0,3,4)\) is represented by \(\underline{b}_{1}\) and \(\underline{b}_{2}\) where \(\underline{b}_{1}\) is same direction of \(\underline{a}=(1,1,0)\) and \(\underline{b}_{2}\) is perpendicular, then \(\underline{\mathrm{b}}_{2}=\) (a) \([(3 / 2),(3 / 2), 0]\) (b) \([(3 / 2),\\{(-3) / 2\\}, 4]\) (c) \([0,(3 / 5),(4 / 5)]\) (d) none of these

if \(\mathrm{a}, \mathrm{b}, \mathrm{c}\) and \(\mathrm{p}, \mathrm{q}, \mathrm{r}\) are reciprocal system of vectors then \(a \times p+b \times q+c \times r\) is equal to (a) \([\mathrm{a} \mathrm{b} \mathrm{c}]\) (b) \(3(a+b+c)\) (c) 0 (d) None of these.

\(\underline{\mathrm{a}} \cdot(2 \underline{\mathrm{b}}+2 \mathrm{c}) \times(3 \underline{\mathrm{a}}+3 \underline{\mathrm{b}}+3 \underline{\mathrm{c}})=\) (a) \([\underline{\mathrm{a}} \underline{\mathrm{b}} \underline{\mathrm{c}}]\) (b) \(3[\underline{\mathrm{a}} \underline{\mathrm{b}} \underline{\mathrm{c}}]\) (c) \(6[\underline{\mathrm{a}} \underline{\mathrm{b}} \underline{\mathrm{c}}]\) (d) 0

See all solutions

Recommended explanations on English Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free