Chapter 18: Problem 686
If \(x\) and \(y\) are related as \(4 x-3 y=10\) and the mean deviation of \(\mathrm{x}\) is 10 then the mean deviation of \(\mathrm{y}\) is (a) 13 (b) \(12.3\) (c) \(13.3\) (d) \(13.5\)
Chapter 18: Problem 686
If \(x\) and \(y\) are related as \(4 x-3 y=10\) and the mean deviation of \(\mathrm{x}\) is 10 then the mean deviation of \(\mathrm{y}\) is (a) 13 (b) \(12.3\) (c) \(13.3\) (d) \(13.5\)
All the tools & learning materials you need for study success - in one app.
Get started for freeVariance of \(1,3,5,7 \ldots \ldots \ldots(4 n+1)\) is (a) \([\\{2 n(2 n-1)\\} / 3]\) (c) \((1 / n) \sqrt\left[\left(n^{2}-1\right) / 3\right] 100\) (d) \([\\{4 n(n+1)\\} / 3]\)
If \(n\) integers taken at random are multiplied together, then the probability that the last digit of the product is \(1,3,7\) or 9 is (a) \(\left(2^{n} / 5^{n}\right)\) (b) \(\left[\left(4^{n}-2^{n}\right) / 5^{n}\right]\) (c) \(\left(4^{n} / 5^{n}\right)\) (d) \((2 / 5)\)
If \(\quad 10 \Sigma_{i=1}(x i-8)=9\) and \({ }^{10} \sum_{i=1}(x i-8)^{2}=45\) then standard deviation of \(\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3} \ldots \ldots \ldots \mathrm{x}_{10}\) is (a) \(19.2\) (b) \(12.92\) (c) \(1.82\) (d) \(1.92\)
If the variance of \(\mathrm{x}\) is 4 then the variance of \(3+5 \mathrm{x}\) is (a) 100 (b) 103 (c) 20 (d) 23
For observations \(x_{1}, x_{2}, \ldots \ldots . . x_{n}, n_{i=1}(x i+4)=100\) and \(n_{i=1}(x i+6)=140\) then \(n=\) and \(\underline{x}=\) (a) 3,20 (b) 20,3 (c) 1,20 (d) 20,1
What do you think about this solution?
We value your feedback to improve our textbook solutions.