Chapter 18: Problem 690
If \(\mathrm{n}=100, \underline{\mathrm{x}}=3\) and \(\mathrm{S}^{2}=11\) then \(\left[\left(\sum \mathrm{xi}^{2}\right) /\left(\sum \mathrm{xi}\right)\right]\) is (a) 10 (b) 22 (c) \(6.66\) (d) 2000
Chapter 18: Problem 690
If \(\mathrm{n}=100, \underline{\mathrm{x}}=3\) and \(\mathrm{S}^{2}=11\) then \(\left[\left(\sum \mathrm{xi}^{2}\right) /\left(\sum \mathrm{xi}\right)\right]\) is (a) 10 (b) 22 (c) \(6.66\) (d) 2000
All the tools & learning materials you need for study success - in one app.
Get started for freeFor three events \(A, B, C\) \(P(\) exactly one of \(A\) or \(B\) occur \()=P\) \(P(\) exactly one of \(B\) or \(C\) occur \()=P\) \(P(\) exactly one of \(C\) or \(A\) occur \()=P\) And \(P(\) all three occur \()=P^{2} .\) Where \(0
For 100 observations \(\sum(x i-30)=0\) and \(\sum(x i-30)^{2}=10000\) then C.V. (coefficient of variance) is \(\%\) (a) 10 (b) 100 (c) \(33.33\) (d) 30
Find mean and S.D. from given data $$ \begin{array}{|l|c|c|c|c|c|} \hline \text { Class } & 33-35 & 36-38 & 39-41 & 42-44 & 45-47 \\ \hline \text { Frequency } \mathrm{f} & 17 & 19 & 23 & 21 & 20 \\ \hline \end{array} $$ (a) \(40.24,4.20\) (b) \(40.24,4.30\) (c) \(4.5,40.20\) (d) \(40.24,4.90\)
Out of 3 n consecutive integers three are selected at random the probability that there sum is divisible by 3 is (a) \(\left[\left(3 n^{2}-n-2\right) /\\{(3 n-1)(3 n-2)\\}\right]\) (b) \(\left[\left(n^{2}-3 n+2\right) /\\{(3 n-1)(3 n-2)\\}\right]\) (c) \(\left[\left(3 n^{2}-3 n+2\right) /\\{(3 n-2)(3 n-3)\\}\right]\) (d) \(\left[\left(3 n^{2}-3 n+2\right) /\\{(3 n-1)(3 n-2)\\}\right]\)
For a data there are 3n observations in which first \(n\) observations are \(a-d\), second n observation are a and last n observations are \(a+d\) and there variance is \((4 / 3)\) then \(|\mathrm{d}|=\) (a) 1 (b) \(\sqrt{2}\) (c) \(\sqrt{(2 / 3)}\) (d) \(\sqrt{(3 / 2)}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.