Chapter 18: Problem 702
The mean of the series \(a, a+d, a+2 d \ldots \ldots . a+(2 n+1) d\) is (a) \(a+[(2 n+1) / 2] d\) (b) \(a+(n+1) d\) (c) \(a+(2 n+1) d\) (d) \(a+[(2 n-1) / 2] d\)
Chapter 18: Problem 702
The mean of the series \(a, a+d, a+2 d \ldots \ldots . a+(2 n+1) d\) is (a) \(a+[(2 n+1) / 2] d\) (b) \(a+(n+1) d\) (c) \(a+(2 n+1) d\) (d) \(a+[(2 n-1) / 2] d\)
All the tools & learning materials you need for study success - in one app.
Get started for freeThe average of \(n\) numbers \(y_{1}, y_{2} \ldots \ldots . . y_{n}\) is M. If \(y_{n}\) is replaced by \(\mathrm{y}^{\prime}\) then the new average is (a) \(\left[\left(M+y_{n}-y^{\prime}\right) / n\right]\) (b) \(\left[\left\\{(n-1) M+y^{\prime}\right\\} / n\right]\) (c) \(\left[\left(n M-y_{n}+y^{\prime}\right) / n\right]\) (d) \(M-y_{n}-y^{\prime}\)
A dice is loaded so that the probability of face \(\mathrm{i}\) is proportional to i. \(\mathrm{i}=1,2, \ldots .6\). Then the probability of an even number occupy when the dice is rolled is (a) \((2 / 7)\) (b) \((3 / 7)\) (c) \((4 / 7)\) (d) \((5 / 7)\)
Standard deviation of \(-1,-2,-3,-4,-5,-6,-7\) is (a) \(-4\) (b) 4 (c) 2 (d) \(-2\)
Mean of n observations is \(\mathrm{m}\) and sum of \(\mathrm{n}-3\) observations is b then mean of remaining 3 observations is (a) \(n m+b\) (b) \([(\mathrm{nm}-\mathrm{b}) / 3]\) (c) \([(n m+b) / 3]\) (d) \(n m-b\)
Out of 3 n consecutive integers three are selected at random the probability that there sum is divisible by 3 is (a) \(\left[\left(3 n^{2}-n-2\right) /\\{(3 n-1)(3 n-2)\\}\right]\) (b) \(\left[\left(n^{2}-3 n+2\right) /\\{(3 n-1)(3 n-2)\\}\right]\) (c) \(\left[\left(3 n^{2}-3 n+2\right) /\\{(3 n-2)(3 n-3)\\}\right]\) (d) \(\left[\left(3 n^{2}-3 n+2\right) /\\{(3 n-1)(3 n-2)\\}\right]\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.