Chapter 18: Problem 713
If standard deviation of 3xi \(-2\) is 8 then variance of \((2 / 3) x i\) is (a) \((144 / 81)\) (b) \((81 / 144)\) (c) \((16 / 9)\) (d) \((4 / 3)\)
Chapter 18: Problem 713
If standard deviation of 3xi \(-2\) is 8 then variance of \((2 / 3) x i\) is (a) \((144 / 81)\) (b) \((81 / 144)\) (c) \((16 / 9)\) (d) \((4 / 3)\)
All the tools & learning materials you need for study success - in one app.
Get started for freeIf the mean of the set of numbers \(x_{1}, x_{2}, \ldots \ldots \ldots x_{n}\) is \(\underline{x}\) then the mean of the numbers \(x i+2 i, 1 \leq i \leq n\) is (a) \(\underline{x}+2 n\) (b) \(\underline{x}+n+1\) (c) \(\underline{x}+2\) (d) \(\underline{x}+n\)
A dice is loaded so that the probability of face \(\mathrm{i}\) is proportional to i. \(\mathrm{i}=1,2, \ldots .6\). Then the probability of an even number occupy when the dice is rolled is (a) \((2 / 7)\) (b) \((3 / 7)\) (c) \((4 / 7)\) (d) \((5 / 7)\)
Find mean and S.D. from given data $$ \begin{array}{|l|c|c|c|c|c|} \hline \text { Class } & 33-35 & 36-38 & 39-41 & 42-44 & 45-47 \\ \hline \text { Frequency } \mathrm{f} & 17 & 19 & 23 & 21 & 20 \\ \hline \end{array} $$ (a) \(40.24,4.20\) (b) \(40.24,4.30\) (c) \(4.5,40.20\) (d) \(40.24,4.90\)
A five digit number is chosen at random. The probability that all digits are distinct and digits at odd places are odd and digits at even places are even is (a) \((1 / 60)\) (b) \((2 / 75)\) (c) \((1 / 50)\) (d) \((1 / 75)\)
If the mean deviation about the median of the observations a, \(2 a, \ldots \ldots . .50 a\) is 50 then \(|a|=\) (a) 2 (b) 3 (c) 4 (d) 5
What do you think about this solution?
We value your feedback to improve our textbook solutions.