Chapter 18: Problem 720
Mean of n observations is \(\mathrm{m}\) and sum of \(\mathrm{n}-3\) observations is b then mean of remaining 3 observations is (a) \(n m+b\) (b) \([(\mathrm{nm}-\mathrm{b}) / 3]\) (c) \([(n m+b) / 3]\) (d) \(n m-b\)
Chapter 18: Problem 720
Mean of n observations is \(\mathrm{m}\) and sum of \(\mathrm{n}-3\) observations is b then mean of remaining 3 observations is (a) \(n m+b\) (b) \([(\mathrm{nm}-\mathrm{b}) / 3]\) (c) \([(n m+b) / 3]\) (d) \(n m-b\)
All the tools & learning materials you need for study success - in one app.
Get started for freeTwo dice are rolled one after the other. The probability that the number on the first is smaller than the number on the second is (a) \((1 / 2)\) (b) \((7 / 18)\) (c) \((3 / 4)\) (d) \((5 / 12)\)
If \(n\) integers taken at random are multiplied together, then the probability that the last digit of the product is \(1,3,7\) or 9 is (a) \(\left(2^{n} / 5^{n}\right)\) (b) \(\left[\left(4^{n}-2^{n}\right) / 5^{n}\right]\) (c) \(\left(4^{n} / 5^{n}\right)\) (d) \((2 / 5)\)
If the mean deviation about the median of the observations a, \(2 a, \ldots \ldots . .50 a\) is 50 then \(|a|=\) (a) 2 (b) 3 (c) 4 (d) 5
Mean of sequence \(1,2,4,8,16 \ldots \ldots .2^{n-1}\) is (a) \(\left[\left(2^{n}-1\right) / n\right]\) (b) \(\left[\left(2^{n-1}-1\right) /(n-1)\right]\) (c) \(\left[\left(2^{n}+1\right) / n\right]\) (d) \(\left[\left(2^{n}-1\right) /(n-1)\right]\)
The probability of having at least one tail in 4 throws with a coin is (a) \((15 / 16)\) (b) \((1 / 16)\) (c) \((1 / 4)\) (d) \((1 / 8)\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.