Chapter 18: Problem 742
If the mean deviation of the number \(1,1+\mathrm{d}, 1+2 \mathrm{~d}, \ldots \ldots 1+50 \mathrm{~d}\). From their mean is 260 then d is (a) \(20.5\) (b) \(20.3\) (c) \(20.4\) (d) \(10.4\)
Chapter 18: Problem 742
If the mean deviation of the number \(1,1+\mathrm{d}, 1+2 \mathrm{~d}, \ldots \ldots 1+50 \mathrm{~d}\). From their mean is 260 then d is (a) \(20.5\) (b) \(20.3\) (c) \(20.4\) (d) \(10.4\)
All the tools & learning materials you need for study success - in one app.
Get started for freeFrom a set of numbers \(\\{1,2,3,4,5,6,7,8,9\\}\). Three numbers are selected at a time without repetition. Find the probability that the sum of numbers is equal to 10 . (a) \((1 / 180)\) (b) \((1 / 21)\) (c) \((7 / 30)\) (d) None
Given the observation \(5,9,13,17,25\) the mean deviation about the median is (a) \(5.5\) (b) \(5.8\) (c) 13 (d) \(5.6\)
Three unbiased dice are tossed. Probability that the sum of digits is more than 15 is (a) \((1 / 12)\) (b) \((1 / 36)\) (c) \((1 / 72)\) (d) \((5 / 108)\)
The mean and standard deviation of \(\mathrm{x}\) is 40 and 4 respectively the mean and standard deviation of \([(x-40) / 4]\) is (a) 1,0 (b) 1,1 (c) 0,1 (d) \(0,-1\)
The average of \(n\) numbers \(y_{1}, y_{2} \ldots \ldots . . y_{n}\) is M. If \(y_{n}\) is replaced by \(\mathrm{y}^{\prime}\) then the new average is (a) \(\left[\left(M+y_{n}-y^{\prime}\right) / n\right]\) (b) \(\left[\left\\{(n-1) M+y^{\prime}\right\\} / n\right]\) (c) \(\left[\left(n M-y_{n}+y^{\prime}\right) / n\right]\) (d) \(M-y_{n}-y^{\prime}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.