Chapter 19: Problem 1804
If the roots of the quadratic equation \(x^{2}+A x+B=0\) are \(\tan 30^{\circ}\) and \(\tan 15^{\circ}\) then the value of \(A-B=\) (a) 1 (b) \(-1\) (c) 2 (d) 3
Chapter 19: Problem 1804
If the roots of the quadratic equation \(x^{2}+A x+B=0\) are \(\tan 30^{\circ}\) and \(\tan 15^{\circ}\) then the value of \(A-B=\) (a) 1 (b) \(-1\) (c) 2 (d) 3
All the tools & learning materials you need for study success - in one app.
Get started for free\(\cos ^{-1}(\cos 8)=\) (a) 8 (b) \(8-2 \pi\) (c) \(\pi-8\) (d) \(2 \pi-8\)
\(\log \cot 1^{\circ}+\log \cot 2^{\circ}+\log \cot 3^{\circ}+\log \cot 89^{\circ}=\) (a) 0 (b) 1 (c) \((\pi / 4)\) (d) \((\pi / 2)\)
\(\left[3+\left|5-7 \sin ^{2} x\right|\right]^{2}\) lies in the interval (a) \([9,64]\) (b) \([3,8]\) (c) \([0,25]\) (d) \([9,25]\)
There is a bridge of the length \(h\) on a valley. The angle of depression of a temple lying in a valley from two ends of a bridge are \(\alpha\) and \(\beta\), then the height of the bridge from top of the temple \(=\) (a) \([(h \tan \alpha \tan \beta) /(\tan \alpha-\tan \beta)]\) (b) \([(h \tan \alpha \tan \beta) /(\tan \alpha+\tan \beta)]\) (c) \([(\tan \alpha \tan \beta) /\\{h(\tan \alpha-\tan \beta)\\}]\) (d) \([\\{h(\tan \alpha+\tan \beta)\\} /(\tan \alpha \tan \beta)]\)
If \(x=\tan 10^{\circ}\), then \(\tan 70^{\circ}=\) (a) \(\left[2 x /\left(1-x^{2}\right)\right]\) (b) \(\left[\left(1-x^{2}\right) / 2 x\right]\) (c) \(7 x\) (d) \(2 \mathrm{x}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.