Chapter 19: Problem 1804
If the roots of the quadratic equation \(x^{2}+A x+B=0\) are \(\tan 30^{\circ}\) and \(\tan 15^{\circ}\) then the value of \(A-B=\) (a) 1 (b) \(-1\) (c) 2 (d) 3
Chapter 19: Problem 1804
If the roots of the quadratic equation \(x^{2}+A x+B=0\) are \(\tan 30^{\circ}\) and \(\tan 15^{\circ}\) then the value of \(A-B=\) (a) 1 (b) \(-1\) (c) 2 (d) 3
All the tools & learning materials you need for study success - in one app.
Get started for free\(\sin ^{-1}(\sin 2)+\sin ^{-1}(\sin 4)+\sin ^{-1}(\sin 6)=\) (a) \(\pi-12\) (b) 0 (c) 12 (d) \(12-\pi\)
\(\sec ^{2}\left(\tan ^{-1} 3\right)+\operatorname{cosec}^{2}\left(\tan ^{-1} 5\right)=\) (a) 276 (b) \([(276) / 25]\) (c) 36 (d) 6
If \(3 \cos x+4 \sin x=K\) has a possible solution then number of values of integral \(\mathrm{K}\) is (a) 3 (b) 5 (c) 10 (d) 11
\(\cos ^{2}\left[727(1 / 2)^{\circ}\right]-\cos ^{2}\left[397(1 / 2)^{\circ}\right]=\) (a) \((3 / 4)\) (b) \((1 / \sqrt{2})\) (c) \((1 / 2)\) (d) \([1 /(2 \sqrt{2})]\)
If \(\left.\tan ^{-1}\left[\left\\{\sqrt{(} 1+x^{2}\right)-1\right\\} / x\right]=(3 / 10)\) then \(x=\) (a) \(\tan (3 / 10)\) (b) \(\tan (4 / 10)\) (c) \(\tan (10 / 3)\) (d) \(\tan (6 / 10)\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.