Chapter 19: Problem 1807
\(x+y=(\pi / 2)\), then range of \(\cos x \cdot \cos y\) is (a) \([-1,1]\) (b) \([0,1]\) (c) \([-(1 / \sqrt{2}),(1 / \sqrt{2})]\) (d) \([-(1 / 2),(1 / 2)]\)
Chapter 19: Problem 1807
\(x+y=(\pi / 2)\), then range of \(\cos x \cdot \cos y\) is (a) \([-1,1]\) (b) \([0,1]\) (c) \([-(1 / \sqrt{2}),(1 / \sqrt{2})]\) (d) \([-(1 / 2),(1 / 2)]\)
All the tools & learning materials you need for study success - in one app.
Get started for freeIf \(\sin ^{-1} x+\sin ^{-1} y+\sin ^{-1} z=(3 \pi / 2)\) then \(x^{10}+y^{10}+z^{10}+\left[3 /\left(x^{10}+y^{10}+z^{10}\right)\right]=\) (a) 0 (b) 2 (c) 4 (d) 3
If \(\cos x=1-2 \sin ^{2} 32^{\circ}, \alpha, \beta\) are the value of \(x\) between \(0^{\circ}\) and \(360^{\circ}\) with \(\alpha<\beta\) then \(\alpha=\) (a) \(180^{\circ}-\beta\) (b) \(200^{\circ}-\beta\) (c) \((\beta / 4)-10^{\circ}\) (d) \((\beta / 5)-4^{\circ}\)
\(\cos ^{-1}(\cos 8)=\) (a) 8 (b) \(8-2 \pi\) (c) \(\pi-8\) (d) \(2 \pi-8\)
\(\sin ^{2}(4 \pi / 3)+\sin (\pi / 6)\) then \(A=\) (a) \((3 / 4)\) (b) \((5 / 4)\) (c) \((5 / 2)\) (d) \((4 / 5)\)
\(\sin ^{-1}(\sin 10)=\) (a) 10 (b) \(3 \pi-10\) (c) \(10-3 \pi\) (d) \(2 \pi-10\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.