Chapter 19: Problem 1807
\(x+y=(\pi / 2)\), then range of \(\cos x \cdot \cos y\) is (a) \([-1,1]\) (b) \([0,1]\) (c) \([-(1 / \sqrt{2}),(1 / \sqrt{2})]\) (d) \([-(1 / 2),(1 / 2)]\)
Chapter 19: Problem 1807
\(x+y=(\pi / 2)\), then range of \(\cos x \cdot \cos y\) is (a) \([-1,1]\) (b) \([0,1]\) (c) \([-(1 / \sqrt{2}),(1 / \sqrt{2})]\) (d) \([-(1 / 2),(1 / 2)]\)
All the tools & learning materials you need for study success - in one app.
Get started for free\(\sin ^{-1}(\sin 4)=\) (a) 4 (b) \(4-2 \pi\) (c) \(\pi-4\) (d) \(4-\pi\)
\({ }^{\infty} \sum_{r=1} \tan ^{-1}\left(1 / 2 r^{2}\right)=\) (a) \((\pi / 4)\) (b) \((\pi / 2)\) (c) \(\tan ^{-1}(\mathrm{n})-(\pi / 4)\) (d) \(\tan ^{-1}(n+1)-(\pi / 4)\)
The solution of the equation \(\tan 3 \theta+\cot \theta=0\) is (a) \(\\{(2 k+1)(\pi / 2), k \in z\\}\) (b) \(\\{k \pi, k \in z\\}\) (c) \(\\{(2 k+1)(\pi / 4), k \in z\\}\) (d) \(\\{(2 k+1)(\pi / 6), k \in z\\}\)
If \(\tan A-\tan B=m, \cot B-\cot A=n\) then \(\tan (A-B)=\) (a) \([(\mathrm{m}+\mathrm{n}) / \mathrm{mn}]\) (b) \([\mathrm{mn} /(\mathrm{m}+\mathrm{n})]\) (c) \([(\mathrm{m}-\mathrm{n}) / \mathrm{mn}]\) (d) \([\mathrm{mn} /(\mathrm{n}-\mathrm{m})]\)
The value of \(\left.\operatorname{cosec}^{-1} \sqrt{5}+\operatorname{cosec}^{-1} \sqrt{(} 65\right)+\operatorname{cosec}^{-1} \sqrt{(325)}+\ldots+\infty\) is (a) \(\pi\) (b) \((3 \pi / 4)\) (c) \((\pi / 4)\) (d) \((\pi / 2)\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.