Chapter 19: Problem 1811
The number of solution of \(\cos x+\cos 2 x+\cos 3 x+\cos 4 x=0\) \(\mathrm{x} \in[0,2 \pi]\) is (a) 4 (b) 5 (c) 6 (d) 7
Chapter 19: Problem 1811
The number of solution of \(\cos x+\cos 2 x+\cos 3 x+\cos 4 x=0\) \(\mathrm{x} \in[0,2 \pi]\) is (a) 4 (b) 5 (c) 6 (d) 7
All the tools & learning materials you need for study success - in one app.
Get started for free
If \(\mathrm{K}\left[\sin 18^{\circ}+\cos 36^{\circ}\right]=5\) then \(\mathrm{K}=\) (a) \(2 \sqrt{5}\) (b) \((\sqrt{5} / 2)\) 4 (d) 5
If \(3 \cos x+4 \sin x=K\) has a possible solution then number of values of integral \(\mathrm{K}\) is (a) 3 (b) 5 (c) 10 (d) 11
If roots of equation \(x^{2}+p x+q=0\) are \(\tan 30\) and \(\tan 15\) then value of \(2+q-p\) is (a) 1 (b) 2 (c) 3 (d) 0
There is a bridge of the length \(h\) on a valley. The angle of depression of a temple lying in a valley from two ends of a bridge are \(\alpha\) and \(\beta\), then the height of the bridge from top of the temple \(=\) (a) \([(h \tan \alpha \tan \beta) /(\tan \alpha-\tan \beta)]\) (b) \([(h \tan \alpha \tan \beta) /(\tan \alpha+\tan \beta)]\) (c) \([(\tan \alpha \tan \beta) /\\{h(\tan \alpha-\tan \beta)\\}]\) (d) \([\\{h(\tan \alpha+\tan \beta)\\} /(\tan \alpha \tan \beta)]\)
The number of values of \(\theta\) in the interval \([0,5 \pi]\) satisfying the equation \(3 \sin ^{2} \theta-7 \sin \theta+2=0\) is (a) 3 (b) 4 (c) 6 (d) 5
What do you think about this solution?
We value your feedback to improve our textbook solutions.