Chapter 19: Problem 1811
The number of solution of \(\cos x+\cos 2 x+\cos 3 x+\cos 4 x=0\) \(\mathrm{x} \in[0,2 \pi]\) is (a) 4 (b) 5 (c) 6 (d) 7
Chapter 19: Problem 1811
The number of solution of \(\cos x+\cos 2 x+\cos 3 x+\cos 4 x=0\) \(\mathrm{x} \in[0,2 \pi]\) is (a) 4 (b) 5 (c) 6 (d) 7
All the tools & learning materials you need for study success - in one app.
Get started for freeIf the lengths of the sides are \(1, \sin x, \cos x\) in a triangle \(A B C\) then
the greatest value of the angle in \(\triangle A B C\) is \([0
\(\sin ^{2}(4 \pi / 3)+\sin (\pi / 6)\) then \(A=\) (a) \((3 / 4)\) (b) \((5 / 4)\) (c) \((5 / 2)\) (d) \((4 / 5)\)
If \(\cos x=1-2 \sin ^{2} 32^{\circ}, \alpha, \beta\) are the value of \(x\) between \(0^{\circ}\) and \(360^{\circ}\) with \(\alpha<\beta\) then \(\alpha=\) (a) \(180^{\circ}-\beta\) (b) \(200^{\circ}-\beta\) (c) \((\beta / 4)-10^{\circ}\) (d) \((\beta / 5)-4^{\circ}\)
If \(2+12 \cos \theta-16 \cos ^{3} \theta=A\), then \(A\) lies in the interval is (a) \([-2,-1]\) (b) \([-2,1]\) (c) \([-6,2]\) (d) \([-2,6]\)
\(\log \cot 1^{\circ}+\log \cot 2^{\circ}+\log \cot 3^{\circ}+\log \cot 89^{\circ}=\) (a) 0 (b) 1 (c) \((\pi / 4)\) (d) \((\pi / 2)\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.