Chapter 19: Problem 1815
The minimum value of \(125 \tan ^{2} \theta+5 \cot ^{2} \theta\) is (a) 5 (b) 25 (c) 125 (d) 50
Chapter 19: Problem 1815
The minimum value of \(125 \tan ^{2} \theta+5 \cot ^{2} \theta\) is (a) 5 (b) 25 (c) 125 (d) 50
All the tools & learning materials you need for study success - in one app.
Get started for free\(\cot ^{-1} 1+\cot ^{-1} 3+\cot ^{-1} 5+\cot ^{-1} 7+\cot ^{-1} 8=\) (a) \((\pi / 4)\) (b) \((\pi / 2)\) (c) \((3 \pi / 4)\) (d) \((\pi / 3)\)
If \(\triangle \mathrm{ABC}, \underline{A M} \perp \mathrm{BC}\) and \(\mathrm{AB}=8 \mathrm{~cm}, \mathrm{BC}=11 \mathrm{~cm}\) and \(m \angle B=50^{\circ}\) then area of \(\triangle A B C\) is \(=\) (a) \(28(\mathrm{~cm})^{2}\) (b) \(33.70(\mathrm{~cm})^{2}\) (c) \(38(\mathrm{~cm})^{2}\) (d) \(43.70 \mathrm{~cm}^{2}\)
The number of values \(x\) satisfying the equation \(\left.\left.\cot ^{-1}[\sqrt{\\{x}(x+1)\\}\right]+\cos ^{-1}\left[\sqrt{(} x^{2}+x+1\right)\right]=(\pi / 2)\) is (a) 0 (b) 1 (c) 2 (d) 3
If \(\cos x+\cos y=0\) and \(\sin x+\sin y=0\) then \(\cos (x-y)=\) (a) 1 (b) \((1 / 2)\) (c) \(-1\) (d) \(-(1 / 2)\)
The number of values of \(\theta\) in the interval \([0,5 \pi]\) satisfying the equation \(3 \sin ^{2} \theta-7 \sin \theta+2=0\) is (a) 3 (b) 4 (c) 6 (d) 5
What do you think about this solution?
We value your feedback to improve our textbook solutions.