Chapter 19: Problem 1815
The minimum value of \(125 \tan ^{2} \theta+5 \cot ^{2} \theta\) is (a) 5 (b) 25 (c) 125 (d) 50
Chapter 19: Problem 1815
The minimum value of \(125 \tan ^{2} \theta+5 \cot ^{2} \theta\) is (a) 5 (b) 25 (c) 125 (d) 50
All the tools & learning materials you need for study success - in one app.
Get started for freeIf \(\cos \alpha=(3 / 5), \cos \beta=(5 / 13), 0<\alpha, \beta<(\pi / 2)\), then \(\sin ^{2}[(\alpha-\beta) / 2]=\) (a) \((64 / 65)\) (b) \((1 / 65)\) (c) \((63 / 65)\) (d) \((2 / 65)\)
\(\sec ^{2}\left(\tan ^{-1} 3\right)+\operatorname{cosec}^{2}\left(\tan ^{-1} 5\right)=\) (a) 276 (b) \([(276) / 25]\) (c) 36 (d) 6
If \(\cos x=\cos y=\cos z\) then \(\tan [(x+y) / 2] \tan [(x-y) / 2]=\) (a) \(\tan ^{2}(x / 2)\) (b) \(\tan ^{2}(\mathrm{y} / 2)\) (c) \(\tan ^{2}(z / 2)\) (d) \(\cot ^{2}(z / 2)\)
The number of values of \(\theta\) in the interval \([0,4 \pi]\) satisfying the equation \(2 \sin ^{2} \theta-\cos 2 \theta=0\) (a) 4 (b) 8 (c) 2 (d) 6
If \(\tan (x / 2)=\operatorname{cosec} x-\sin x\) then \(\tan ^{2}(x / 2)=\) (a) \(\sqrt{5}+1\) (b) \(\sqrt{5}-1\) (c) \(\sqrt{5}-2\) (d) \(\sqrt{5}+2\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.