Chapter 19: Problem 1816
If \(A=\cos ^{4} \theta+\sin ^{2} \theta, \forall \theta \in R\) then \(A\) lies in the interval (a) \([1,2]\) (b) \([(3 / 4), 1]\) (c) \([(13 / 16), 1]\) (d) \([(3 / 4),(13 / 16)]\)
Chapter 19: Problem 1816
If \(A=\cos ^{4} \theta+\sin ^{2} \theta, \forall \theta \in R\) then \(A\) lies in the interval (a) \([1,2]\) (b) \([(3 / 4), 1]\) (c) \([(13 / 16), 1]\) (d) \([(3 / 4),(13 / 16)]\)
All the tools & learning materials you need for study success - in one app.
Get started for freeThe angle of depression for two consecutive km stones on a horizontal road observed on the opposite sides of plane from a plane are \(\alpha\) and \(\beta\) respectively and if the height of the plane is \(h\) then \(h=\) (a) \([(\tan \alpha-\tan \beta) /(\tan \alpha \tan \beta)]\) (b) \([(\tan \alpha \tan \beta) /(\tan \alpha-\tan \beta)]\) (c) \([(\tan \alpha+\tan \beta) /(\tan \alpha \tan \beta)]\) (d) \([(\tan \alpha \tan \beta) /(\tan \alpha+\tan \beta)]\)
\(\log \cot 1^{\circ}+\log \cot 2^{\circ}+\log \cot 3^{\circ}+\log \cot 89^{\circ}=\) (a) 0 (b) 1 (c) \((\pi / 4)\) (d) \((\pi / 2)\)
The number of values \(x\) satisfying the equation \(\left.\left.\cot ^{-1}[\sqrt{\\{x}(x+1)\\}\right]+\cos ^{-1}\left[\sqrt{(} x^{2}+x+1\right)\right]=(\pi / 2)\) is (a) 0 (b) 1 (c) 2 (d) 3
The angle of depression of the top and bottom of a tower observed from top of a lighthouse of 300 meter height are \(30^{\circ}\) and \(60^{\circ}\) respectively then the height of the tower is (a) 300 meter (b) \(100 \mathrm{~m}\) (c) \(200 \mathrm{~m}\) (d) \(50 \mathrm{~m}\)
If \(\theta=(6 \pi / 7)\) and \(x=\tan \theta+\cot (-\theta)\) then (a) \(x>0\) (b) \(x<0\) (c) \(x=0\) (d) \(x \geq 0\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.