Chapter 19: Problem 1816
If \(A=\cos ^{4} \theta+\sin ^{2} \theta, \forall \theta \in R\) then \(A\) lies in the interval (a) \([1,2]\) (b) \([(3 / 4), 1]\) (c) \([(13 / 16), 1]\) (d) \([(3 / 4),(13 / 16)]\)
Chapter 19: Problem 1816
If \(A=\cos ^{4} \theta+\sin ^{2} \theta, \forall \theta \in R\) then \(A\) lies in the interval (a) \([1,2]\) (b) \([(3 / 4), 1]\) (c) \([(13 / 16), 1]\) (d) \([(3 / 4),(13 / 16)]\)
All the tools & learning materials you need for study success - in one app.
Get started for free
The angle of depression of the top and bottom of a tower observed from top of a lighthouse of 300 meter height are \(30^{\circ}\) and \(60^{\circ}\) respectively then the height of the tower is (a) 300 meter (b) \(100 \mathrm{~m}\) (c) \(200 \mathrm{~m}\) (d) \(50 \mathrm{~m}\)
Which of the following equation has no solution (a) \(4 \sin \theta+3 \cos \theta=1\) (b) \(\operatorname{cosec} \theta \cdot \sec \theta=1\) (c) \(\sin \theta \cdot \cos \theta=(1 / 2)\) (d) \(\operatorname{cosec} \theta-\sec \theta=\operatorname{cosec} \theta \cdot \sec \theta\)
If \(\Delta \mathrm{ABC}, \mathrm{a}=2, \mathrm{~b}=3\) and \(\sin \mathrm{A}=(1 / 3)\), then \(\mathrm{B}=\) (a) \((\pi / 4)\) (b) \((\pi / 6)\) (c) \((\pi / 2)\) (d) \((\pi / 3)\)
\(\cos ^{2}\left[727(1 / 2)^{\circ}\right]-\cos ^{2}\left[397(1 / 2)^{\circ}\right]=\) (a) \((3 / 4)\) (b) \((1 / \sqrt{2})\) (c) \((1 / 2)\) (d) \([1 /(2 \sqrt{2})]\)
If \(\cos \theta+\sec \theta=2\) then \(\cos ^{2012} \theta+\sec ^{2012} \theta=\) (a) \(2^{2012}\) (b) \(2^{2013}\) (c) 2 (d) 0
What do you think about this solution?
We value your feedback to improve our textbook solutions.