Chapter 19: Problem 1818
If \([(\cos A) / 3]=[(\cos B) / 4]=(1 / 5),-(\pi / 2)
All the tools & learning materials you need for study success - in one app.
Get started for freeIf roots of equation \(x^{2}+p x+q=0\) are \(\tan 30\) and \(\tan 15\) then value of \(2+q-p\) is (a) 1 (b) 2 (c) 3 (d) 0
\(A=\tan \left[\sin ^{-1}(3 / 5)+\cot ^{-1}(3 / 2)\right]\) then \(A=\) (a) \((17 / 2)\) (b) \((17 / 6)\) (c) \((17 / 12)\) (d) \((6 / 17)\)
Right circular cone has a height \(40 \mathrm{~cm}\) and its semi vertical angle is \(45^{\circ}\) then radius of its base circle is (a) \(40 \mathrm{~cm}\) (b) \(80 \mathrm{~cm}\) (c) \([(40 \sqrt{3}) / 2] \mathrm{cm}\) (d) \(20 \mathrm{~cm}\)
If \(\sin ^{-1} x+\sin ^{-1} y+\sin ^{-1} z=(3 \pi / 2)\) then \(x^{10}+y^{10}+z^{10}+\left[3 /\left(x^{10}+y^{10}+z^{10}\right)\right]=\) (a) 0 (b) 2 (c) 4 (d) 3
If \(\sin ^{-1} x+\sin ^{-1} y+\sin ^{-1} z=[(2 \pi) / 3]\) then \(\cos ^{-1} x+\cos ^{-1} y+\cos ^{-1} z=\) (a) \((\pi / 3)\) (b) \((5 \pi / 6)\) (c) \((\pi / 2)\) (d) \((3 \pi / 2)\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.