Chapter 19: Problem 1818
If \([(\cos A) / 3]=[(\cos B) / 4]=(1 / 5),-(\pi / 2)
All the tools & learning materials you need for study success - in one app.
Get started for freeIf \(3 \cos x+4 \sin x=K\) has a possible solution then number of values of integral \(\mathrm{K}\) is (a) 3 (b) 5 (c) 10 (d) 11
If \(4 \cot ^{2} \alpha-16 \cot \alpha+15<0\) and \(\alpha \in R\) then cota lies in interval (a) \([(3 / 2),(5 / 2)]\) (b) \([0,(3 / 2)]\) (c) \([0,(5 / 2)]\) (d) \([(5 / 2), \infty]\)
If \(A=\left|\begin{array}{lll}\sin ^{2} x & \cos ^{2} x & 1 \\ \cos ^{2} x & \sin ^{2} x & 1 \\ -10 & 12 & 2\end{array}\right|\) then \(A=\) (a) 0 (b) \(10 \sin ^{2} x\) (c) \(12 \cos ^{2} x-10 \sin ^{2} x\) (d) \(12 \cos ^{2} x\)
\(\cos (x-y)=a, \cos (x+y) \Rightarrow \cot x \cot y=\) (a) \([(a-1) /(a+1)]\) (b) \([(a+1) /(a-1)]\) (c) \(a-1\) (d) \(a+1\)
\(\sin \left[\cot ^{-1}\left(\cos \left(\tan ^{-1} x\right)\right)\right]=\) (b) \(\left.\sqrt{[}\left(x^{2}+1\right) /\left(x^{2}+2\right)\right]\) (c) \(\left[x / \sqrt{ \left.\left(x^{2}+2\right)\right]}\right.\) (d) \(\left[1 / \sqrt{ \left.\left(x^{2}+2\right)\right]}\right.\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.