Chapter 19: Problem 1819
If \(\sin A=3 \sin (A+2 B)\) angle \(B\) is acute and \(A\) is obtuse: then (a) \(\tan \mathrm{B}=(1 / \sqrt{2})\) (b) \(\tan B>(1 / \sqrt{2})\) (c) \(\tan \mathrm{B}<(1 / \sqrt{2})\) (d) \(0<\tan B<(1 / \sqrt{2})\)
Chapter 19: Problem 1819
If \(\sin A=3 \sin (A+2 B)\) angle \(B\) is acute and \(A\) is obtuse: then (a) \(\tan \mathrm{B}=(1 / \sqrt{2})\) (b) \(\tan B>(1 / \sqrt{2})\) (c) \(\tan \mathrm{B}<(1 / \sqrt{2})\) (d) \(0<\tan B<(1 / \sqrt{2})\)
All the tools & learning materials you need for study success - in one app.
Get started for freeThere is a bridge of the length \(h\) on a valley. The angle of depression of a temple lying in a valley from two ends of a bridge are \(\alpha\) and \(\beta\), then the height of the bridge from top of the temple \(=\) (a) \([(h \tan \alpha \tan \beta) /(\tan \alpha-\tan \beta)]\) (b) \([(h \tan \alpha \tan \beta) /(\tan \alpha+\tan \beta)]\) (c) \([(\tan \alpha \tan \beta) /\\{h(\tan \alpha-\tan \beta)\\}]\) (d) \([\\{h(\tan \alpha+\tan \beta)\\} /(\tan \alpha \tan \beta)]\)
\(\tan \left[(\pi / 4)+(1 / 2) \sin ^{-1}(a / b)\right]-\tan \left[(\pi / 4)-(1 / 2) \sin ^{-1}(a / b)\right]\) (a) \(\left[2 a / \sqrt{ \left.\left(b^{2}-a^{2}\right)\right]}\right.\) (b) \(\left[2 b / \sqrt{ \left.\left(b^{2}-a^{2}\right)\right]}\right.\) (c) \((2 \mathrm{~b} / \mathrm{a})\) (d) \((a / 2 b)\)
If \(3 \cos x+4 \sin x=K\) has a possible solution then number of values of integral \(\mathrm{K}\) is (a) 3 (b) 5 (c) 10 (d) 11
\(15 \sin ^{4} x+10 \cos ^{4} x=6\) then \(\tan ^{2} x=\) (a) \((2 / 5)\) (b) \((1 / 3)\) (c) \((3 / 5)\) (d) \((2 / 3)\)
The number of values of \(\theta\) in the interval \([0,4 \pi]\) satisfying the equation \(2 \sin ^{2} \theta-\cos 2 \theta=0\) (a) 4 (b) 8 (c) 2 (d) 6
What do you think about this solution?
We value your feedback to improve our textbook solutions.