Chapter 19: Problem 1819
If \(\sin A=3 \sin (A+2 B)\) angle \(B\) is acute and \(A\) is obtuse: then (a) \(\tan \mathrm{B}=(1 / \sqrt{2})\) (b) \(\tan B>(1 / \sqrt{2})\) (c) \(\tan \mathrm{B}<(1 / \sqrt{2})\) (d) \(0<\tan B<(1 / \sqrt{2})\)
Chapter 19: Problem 1819
If \(\sin A=3 \sin (A+2 B)\) angle \(B\) is acute and \(A\) is obtuse: then (a) \(\tan \mathrm{B}=(1 / \sqrt{2})\) (b) \(\tan B>(1 / \sqrt{2})\) (c) \(\tan \mathrm{B}<(1 / \sqrt{2})\) (d) \(0<\tan B<(1 / \sqrt{2})\)
All the tools & learning materials you need for study success - in one app.
Get started for freeIf \(x=\tan 10^{\circ}\), then \(\tan 70^{\circ}=\) (a) \(\left[2 x /\left(1-x^{2}\right)\right]\) (b) \(\left[\left(1-x^{2}\right) / 2 x\right]\) (c) \(7 x\) (d) \(2 \mathrm{x}\)
The number of values \(x\) satisfying the equation \(\left.\left.\cot ^{-1}[\sqrt{\\{x}(x+1)\\}\right]+\cos ^{-1}\left[\sqrt{(} x^{2}+x+1\right)\right]=(\pi / 2)\) is (a) 0 (b) 1 (c) 2 (d) 3
If \(x=\cos ^{4}(\pi / 24)-\sin ^{4}(\pi / 24)\) then \(x=\) (a) \([(\sqrt{5}-1) /(2 \sqrt{2})]\) (b) \([(\sqrt{5}-1) / 4]\) (c) \([(\sqrt{3}+1) /(2 \sqrt{2})]\) (d) \([\sqrt{(} 2+\sqrt{2}) / 4]\)
If \(A=\cos ^{4} \theta+\sin ^{2} \theta, \forall \theta \in R\) then \(A\) lies in the interval (a) \([1,2]\) (b) \([(3 / 4), 1]\) (c) \([(13 / 16), 1]\) (d) \([(3 / 4),(13 / 16)]\)
Right circular cone has a height \(40 \mathrm{~cm}\) and its semi vertical angle is \(45^{\circ}\) then radius of its base circle is (a) \(40 \mathrm{~cm}\) (b) \(80 \mathrm{~cm}\) (c) \([(40 \sqrt{3}) / 2] \mathrm{cm}\) (d) \(20 \mathrm{~cm}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.