Chapter 19: Problem 1820
\(\sin ^{2}(4 \pi / 3)+\sin (\pi / 6)\) then \(A=\) (a) \((3 / 4)\) (b) \((5 / 4)\) (c) \((5 / 2)\) (d) \((4 / 5)\)
Chapter 19: Problem 1820
\(\sin ^{2}(4 \pi / 3)+\sin (\pi / 6)\) then \(A=\) (a) \((3 / 4)\) (b) \((5 / 4)\) (c) \((5 / 2)\) (d) \((4 / 5)\)
All the tools & learning materials you need for study success - in one app.
Get started for free
\(\log \cot 1^{\circ}+\log \cot 2^{\circ}+\log \cot 3^{\circ}+\log \cot 89^{\circ}=\) (a) 0 (b) 1 (c) \((\pi / 4)\) (d) \((\pi / 2)\)
\(\cot ^{-1} 1+\cot ^{-1} 3+\cot ^{-1} 5+\cot ^{-1} 7+\cot ^{-1} 8=\) (a) \((\pi / 4)\) (b) \((\pi / 2)\) (c) \((3 \pi / 4)\) (d) \((\pi / 3)\)
Right circular cone has a height \(40 \mathrm{~cm}\) and its semi vertical angle is \(45^{\circ}\) then radius of its base circle is (a) \(40 \mathrm{~cm}\) (b) \(80 \mathrm{~cm}\) (c) \([(40 \sqrt{3}) / 2] \mathrm{cm}\) (d) \(20 \mathrm{~cm}\)
The number of solution of \(\cos x+\cos 2 x+\cos 3 x+\cos 4 x=0\) \(\mathrm{x} \in[0,2 \pi]\) is (a) 4 (b) 5 (c) 6 (d) 7
If \(\sin ^{-1} x-\cos ^{-1} x<0\) then
(a) \(-1 \leq x<(1 / \sqrt{2})\)
(b) \(-1
What do you think about this solution?
We value your feedback to improve our textbook solutions.