Chapter 19: Problem 1820
\(\sin ^{2}(4 \pi / 3)+\sin (\pi / 6)\) then \(A=\) (a) \((3 / 4)\) (b) \((5 / 4)\) (c) \((5 / 2)\) (d) \((4 / 5)\)
Chapter 19: Problem 1820
\(\sin ^{2}(4 \pi / 3)+\sin (\pi / 6)\) then \(A=\) (a) \((3 / 4)\) (b) \((5 / 4)\) (c) \((5 / 2)\) (d) \((4 / 5)\)
All the tools & learning materials you need for study success - in one app.
Get started for free\(\cos (x-y)=a, \cos (x+y) \Rightarrow \cot x \cot y=\) (a) \([(a-1) /(a+1)]\) (b) \([(a+1) /(a-1)]\) (c) \(a-1\) (d) \(a+1\)
\(\log \cot 1^{\circ}+\log \cot 2^{\circ}+\log \cot 3^{\circ}+\log \cot 89^{\circ}=\) (a) 0 (b) 1 (c) \((\pi / 4)\) (d) \((\pi / 2)\)
If \(\mathrm{K}\left[\sin 18^{\circ}+\cos 36^{\circ}\right]=5\) then \(\mathrm{K}=\) (a) \(2 \sqrt{5}\) (b) \((\sqrt{5} / 2)\) 4 (d) 5
If \(\sin ^{-1}(1-x)-2 \sin ^{-1} x=(\pi / 2)\) then \(x=\) (a) \(0,(1 / 2)\) (b) \(1,(1 / 2)\) (c) 0 (d) \((1 / 2)\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.