Chapter 19: Problem 1822
If roots of equation \(x^{2}+p x+q=0\) are \(\tan 30\) and \(\tan 15\) then value of \(2+q-p\) is (a) 1 (b) 2 (c) 3 (d) 0
Chapter 19: Problem 1822
If roots of equation \(x^{2}+p x+q=0\) are \(\tan 30\) and \(\tan 15\) then value of \(2+q-p\) is (a) 1 (b) 2 (c) 3 (d) 0
All the tools & learning materials you need for study success - in one app.
Get started for freeIf \(\cos x=\cos y=\cos z\) then \(\tan [(x+y) / 2] \tan [(x-y) / 2]=\) (a) \(\tan ^{2}(x / 2)\) (b) \(\tan ^{2}(\mathrm{y} / 2)\) (c) \(\tan ^{2}(z / 2)\) (d) \(\cot ^{2}(z / 2)\)
If \(\cos \mathrm{A}=(1 / 7)\) and \(\cos \mathrm{B}=(13 / 14), 0<\mathrm{A}, \mathrm{B}<(\pi / 2)\), then \(A-B=\) (a) \((\pi / 2)\) (b) \((\pi / 3)\) (c) \((\pi / 4)\) (d) \((\pi / 6)\)
If \(\sin ^{-1} x-\cos ^{-1} x<0\) then
(a) \(-1 \leq x<(1 / \sqrt{2})\)
(b) \(-1
The number of solution of the equation \(\sqrt{(3) \sin x+\cos x}=4\) is \(x \in[0,2 \pi]\) (a) 1 (b) 2 (c) 0 (d) 3
If \(2 \tan \alpha+\cot \beta=\tan \beta\) then \(\tan (\beta-\alpha)=\) (a) tana (b) cota (c) \(\tan \beta\) (d) \(\cot \beta\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.