Chapter 19: Problem 1822
If roots of equation \(x^{2}+p x+q=0\) are \(\tan 30\) and \(\tan 15\) then value of \(2+q-p\) is (a) 1 (b) 2 (c) 3 (d) 0
Chapter 19: Problem 1822
If roots of equation \(x^{2}+p x+q=0\) are \(\tan 30\) and \(\tan 15\) then value of \(2+q-p\) is (a) 1 (b) 2 (c) 3 (d) 0
All the tools & learning materials you need for study success - in one app.
Get started for freeWhich of the following equation has no solution (a) \(4 \sin \theta+3 \cos \theta=1\) (b) \(\operatorname{cosec} \theta \cdot \sec \theta=1\) (c) \(\sin \theta \cdot \cos \theta=(1 / 2)\) (d) \(\operatorname{cosec} \theta-\sec \theta=\operatorname{cosec} \theta \cdot \sec \theta\)
\({ }^{\infty} \sum_{r=1} \tan ^{-1}\left(1 / 2 r^{2}\right)=\) (a) \((\pi / 4)\) (b) \((\pi / 2)\) (c) \(\tan ^{-1}(\mathrm{n})-(\pi / 4)\) (d) \(\tan ^{-1}(n+1)-(\pi / 4)\)
If the roots of the quadratic equation \(x^{2}+A x+B=0\) are \(\tan 30^{\circ}\) and \(\tan 15^{\circ}\) then the value of \(A-B=\) (a) 1 (b) \(-1\) (c) 2 (d) 3
If \(\tan (x / 2)=\operatorname{cosec} x-\sin x\) then \(\tan ^{2}(x / 2)=\) (a) \(\sqrt{5}+1\) (b) \(\sqrt{5}-1\) (c) \(\sqrt{5}-2\) (d) \(\sqrt{5}+2\)
If \(A=\cos ^{4} \theta+\sin ^{2} \theta, \forall \theta \in R\) then \(A\) lies in the interval (a) \([1,2]\) (b) \([(3 / 4), 1]\) (c) \([(13 / 16), 1]\) (d) \([(3 / 4),(13 / 16)]\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.