Chapter 19: Problem 1824
\(\cos 12^{\circ}+\cos 84^{\circ}+\cos 156^{\circ}+\cos 132^{\circ}\) (a) \((1 / 8)\) (b) \(-(1 / 2)\) (c) 1 (d) \((1 / 2)\)
Chapter 19: Problem 1824
\(\cos 12^{\circ}+\cos 84^{\circ}+\cos 156^{\circ}+\cos 132^{\circ}\) (a) \((1 / 8)\) (b) \(-(1 / 2)\) (c) 1 (d) \((1 / 2)\)
All the tools & learning materials you need for study success - in one app.
Get started for freeIf the lengths of the sides are \(1, \sin x, \cos x\) in a triangle \(A B C\) then
the greatest value of the angle in \(\triangle A B C\) is \([0
If \(2 \tan \alpha+\cot \beta=\tan \beta\) then \(\tan (\beta-\alpha)=\) (a) tana (b) cota (c) \(\tan \beta\) (d) \(\cot \beta\)
The value of \(\left.\operatorname{cosec}^{-1} \sqrt{5}+\operatorname{cosec}^{-1} \sqrt{(} 65\right)+\operatorname{cosec}^{-1} \sqrt{(325)}+\ldots+\infty\) is (a) \(\pi\) (b) \((3 \pi / 4)\) (c) \((\pi / 4)\) (d) \((\pi / 2)\)
If \(x=\tan 10^{\circ}\), then \(\tan 70^{\circ}=\) (a) \(\left[2 x /\left(1-x^{2}\right)\right]\) (b) \(\left[\left(1-x^{2}\right) / 2 x\right]\) (c) \(7 x\) (d) \(2 \mathrm{x}\)
\(\tan ^{-1}(\tan 4)-\tan ^{-1}(\tan (-6))+\cos ^{-1}(\cos 10)=\) (a) 16 (b) \(\pi\) (c) \(-\pi\) (d) \(5 \pi-12\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.