Chapter 19: Problem 1824
\(\cos 12^{\circ}+\cos 84^{\circ}+\cos 156^{\circ}+\cos 132^{\circ}\) (a) \((1 / 8)\) (b) \(-(1 / 2)\) (c) 1 (d) \((1 / 2)\)
Chapter 19: Problem 1824
\(\cos 12^{\circ}+\cos 84^{\circ}+\cos 156^{\circ}+\cos 132^{\circ}\) (a) \((1 / 8)\) (b) \(-(1 / 2)\) (c) 1 (d) \((1 / 2)\)
All the tools & learning materials you need for study success - in one app.
Get started for freeThe number of values of \(\theta\) in the interval \([0,2 \pi]\) satisfying the equation \(\tan 2 \theta \tan \theta=1\) is (a) 4 (b) 5 (c) 6 (d) 7
If \(3 \cos x+4 \sin x=K\) has a possible solution then number of values of integral \(\mathrm{K}\) is (a) 3 (b) 5 (c) 10 (d) 11
If \([(3 \sin 2 \theta) /(5+4 \cos 2 \theta)]=1\) then \(\tan \theta=\) (a)1 (b) \((1 / 3)\) (c) 3 (d) \((1 / 4)\)
If \(\cos x+\cos y=0\) and \(\sin x+\sin y=0\) then \(\cos (x-y)=\) (a) 1 (b) \((1 / 2)\) (c) \(-1\) (d) \(-(1 / 2)\)
If the lengths of the sides are \(1, \sin x, \cos x\) in a triangle \(A B C\) then
the greatest value of the angle in \(\triangle A B C\) is \([0
What do you think about this solution?
We value your feedback to improve our textbook solutions.