Chapter 19: Problem 1829
If \(4 \cot ^{2} \alpha-16 \cot \alpha+15<0\) and \(\alpha \in R\) then cota lies in interval (a) \([(3 / 2),(5 / 2)]\) (b) \([0,(3 / 2)]\) (c) \([0,(5 / 2)]\) (d) \([(5 / 2), \infty]\)
Chapter 19: Problem 1829
If \(4 \cot ^{2} \alpha-16 \cot \alpha+15<0\) and \(\alpha \in R\) then cota lies in interval (a) \([(3 / 2),(5 / 2)]\) (b) \([0,(3 / 2)]\) (c) \([0,(5 / 2)]\) (d) \([(5 / 2), \infty]\)
All the tools & learning materials you need for study success - in one app.
Get started for free\(\sin ^{-1}(\sin 4)=\) (a) 4 (b) \(4-2 \pi\) (c) \(\pi-4\) (d) \(4-\pi\)
If \(\sin ^{-1}(1-x)-2 \sin ^{-1} x=(\pi / 2)\) then \(x=\) (a) \(0,(1 / 2)\) (b) \(1,(1 / 2)\) (c) 0 (d) \((1 / 2)\)
Right circular cone has a height \(40 \mathrm{~cm}\) and its semi vertical angle is \(45^{\circ}\) then radius of its base circle is (a) \(40 \mathrm{~cm}\) (b) \(80 \mathrm{~cm}\) (c) \([(40 \sqrt{3}) / 2] \mathrm{cm}\) (d) \(20 \mathrm{~cm}\)
The minimum value of \(125 \tan ^{2} \theta+5 \cot ^{2} \theta\) is (a) 5 (b) 25 (c) 125 (d) 50
If \(\tan ^{-1} 2 x+\tan ^{-1} 3 x=(\pi / 4)\) then its solution is (a) \(\\{1,(1 / 6)\\}\) (b) \(\\{\pm(1 / 6)\\}\) (c) \(\\{-1,(1 / 6)\\}\) (d) \(\\{1 / 6\\}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.