Chapter 19: Problem 1829
If \(4 \cot ^{2} \alpha-16 \cot \alpha+15<0\) and \(\alpha \in R\) then cota lies in interval (a) \([(3 / 2),(5 / 2)]\) (b) \([0,(3 / 2)]\) (c) \([0,(5 / 2)]\) (d) \([(5 / 2), \infty]\)
Chapter 19: Problem 1829
If \(4 \cot ^{2} \alpha-16 \cot \alpha+15<0\) and \(\alpha \in R\) then cota lies in interval (a) \([(3 / 2),(5 / 2)]\) (b) \([0,(3 / 2)]\) (c) \([0,(5 / 2)]\) (d) \([(5 / 2), \infty]\)
All the tools & learning materials you need for study success - in one app.
Get started for freeIf \(\cos \mathrm{A}=(1 / 7)\) and \(\cos \mathrm{B}=(13 / 14), 0<\mathrm{A}, \mathrm{B}<(\pi / 2)\), then \(A-B=\) (a) \((\pi / 2)\) (b) \((\pi / 3)\) (c) \((\pi / 4)\) (d) \((\pi / 6)\)
\(\sec ^{2}\left(\tan ^{-1} 3\right)+\operatorname{cosec}^{2}\left(\tan ^{-1} 5\right)=\) (a) 276 (b) \([(276) / 25]\) (c) 36 (d) 6
If the roots of the quadratic equation \(4 x^{2}-4 x+1=\cos ^{2} \theta\) is \(a\) and \(\beta\) then \(\alpha+\beta=\) (a) \(\cos ^{2}(\theta / 2)\) (b) \(\sin ^{2}(\theta / 2)\) (c) 1 (d) \(2 \cos ^{2}(\theta / 2)\)
If \(\tan (\cot x)=\cot (\tan x)\) then \(\operatorname{cosec} 2 x=\) (a) \((2 \mathrm{n}+1)(\pi / 2), \mathrm{n} \in \mathbf{z}\) (b) \((2 n+1)(\pi / 4), n \in z\) (c) \([\\{n(n+1) \pi\\} / 2], n \in z\) (d) \((\mathrm{n} \pi / 4), \mathrm{n} \in \mathbf{z}\)
Right circular cone has a height \(40 \mathrm{~cm}\) and its semi vertical angle is \(45^{\circ}\) then radius of its base circle is (a) \(40 \mathrm{~cm}\) (b) \(80 \mathrm{~cm}\) (c) \([(40 \sqrt{3}) / 2] \mathrm{cm}\) (d) \(20 \mathrm{~cm}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.