Chapter 19: Problem 1833
If \(\sin x \cos y=(1 / 8)\) and \(2 \cot x=3 \cot y\) then \(\sin (x+y)=\) (a) \((1 / 16)\) (b) \((5 / 16)\) (c) \((1 / 8)\) (d) \((5 / 8)\)
Chapter 19: Problem 1833
If \(\sin x \cos y=(1 / 8)\) and \(2 \cot x=3 \cot y\) then \(\sin (x+y)=\) (a) \((1 / 16)\) (b) \((5 / 16)\) (c) \((1 / 8)\) (d) \((5 / 8)\)
All the tools & learning materials you need for study success - in one app.
Get started for free
The number of values of \(\theta\) in the interval \([0,4 \pi]\) satisfying the equation \(2 \sin ^{2} \theta-\cos 2 \theta=0\) (a) 4 (b) 8 (c) 2 (d) 6
If \(\sin A=3 \sin (A+2 B)\) angle \(B\) is acute and \(A\) is obtuse: then (a) \(\tan \mathrm{B}=(1 / \sqrt{2})\) (b) \(\tan B>(1 / \sqrt{2})\) (c) \(\tan \mathrm{B}<(1 / \sqrt{2})\) (d) \(0<\tan B<(1 / \sqrt{2})\)
\(15 \sin ^{4} x+10 \cos ^{4} x=6\) then \(\tan ^{2} x=\) (a) \((2 / 5)\) (b) \((1 / 3)\) (c) \((3 / 5)\) (d) \((2 / 3)\)
If the lengths of the sides are \(1, \sin x, \cos x\) in a triangle \(A B C\) then
the greatest value of the angle in \(\triangle A B C\) is \([0
Which of the following equation has no solution (a) \(4 \sin \theta+3 \cos \theta=1\) (b) \(\operatorname{cosec} \theta \cdot \sec \theta=1\) (c) \(\sin \theta \cdot \cos \theta=(1 / 2)\) (d) \(\operatorname{cosec} \theta-\sec \theta=\operatorname{cosec} \theta \cdot \sec \theta\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.