Chapter 19: Problem 1836
If \(\cos (\alpha+\beta)=(4 / 5), \sin (\alpha-\beta)=(5 / 13), 0<\alpha, \beta<(\pi / 4)\) then \(\cot 2 \alpha=\) (a) \((12 / 19)\) (b) \((7 / 20)\) (c) \((16 / 25)\) (d) \((33 / 56)\)
Chapter 19: Problem 1836
If \(\cos (\alpha+\beta)=(4 / 5), \sin (\alpha-\beta)=(5 / 13), 0<\alpha, \beta<(\pi / 4)\) then \(\cot 2 \alpha=\) (a) \((12 / 19)\) (b) \((7 / 20)\) (c) \((16 / 25)\) (d) \((33 / 56)\)
All the tools & learning materials you need for study success - in one app.
Get started for freeIf \(\sin \left(120^{\circ}-\alpha\right)=\sin \left(120^{\circ}-\beta\right)\) and \(0<\alpha, \beta<\pi\) then all values of \(\alpha, \beta\) are given by (a) \(\alpha+\beta=(\pi / 3)\) (b) \(\alpha=\beta\) (c) \(\alpha=\beta\) or \(\alpha+\beta=(\pi / 3)\) (d) \(a+\beta=0\)
\(\tan ^{-1}(1 / 4)+\tan ^{-1}(2 / 9)=\) (a) \((1 / 2) \cos ^{-1}(3 / 5)\) (b) \((1 / 2) \sin ^{-1}(4 / 5)\) (c) \((1 / 2) \tan ^{-1}(3 / 5)\) (d) \(\tan ^{-1}(8 / 9)\)
If \(\sin A=3 \sin (A+2 B)\) angle \(B\) is acute and \(A\) is obtuse: then (a) \(\tan \mathrm{B}=(1 / \sqrt{2})\) (b) \(\tan B>(1 / \sqrt{2})\) (c) \(\tan \mathrm{B}<(1 / \sqrt{2})\) (d) \(0<\tan B<(1 / \sqrt{2})\)
If \(A=(\sin 2)(\sin 3)(\sin 5)\) then \(\begin{array}{llll}\text { (a) } a>0 & \text { (b) } A=0 & \text { (c) } A<0 & \text { (d) } A \geq 0\end{array}\)
If \(\cos x+\cos y=0\) and \(\sin x+\sin y=0\) then \(\cos (x-y)=\) (a) 1 (b) \((1 / 2)\) (c) \(-1\) (d) \(-(1 / 2)\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.