Chapter 19: Problem 1836
If \(\cos (\alpha+\beta)=(4 / 5), \sin (\alpha-\beta)=(5 / 13), 0<\alpha, \beta<(\pi / 4)\) then \(\cot 2 \alpha=\) (a) \((12 / 19)\) (b) \((7 / 20)\) (c) \((16 / 25)\) (d) \((33 / 56)\)
Chapter 19: Problem 1836
If \(\cos (\alpha+\beta)=(4 / 5), \sin (\alpha-\beta)=(5 / 13), 0<\alpha, \beta<(\pi / 4)\) then \(\cot 2 \alpha=\) (a) \((12 / 19)\) (b) \((7 / 20)\) (c) \((16 / 25)\) (d) \((33 / 56)\)
All the tools & learning materials you need for study success - in one app.
Get started for freeIf \(\triangle A B C, \sin A+\cos B=0\) then range of angle \(A\) is (a) \([0,(\pi / 4)]\) (b) \([0,(\pi / 6)]\) (c) \([0,(\pi / 3)]\) (d) \([(\pi / 6),(\pi / 4)]\)
If \(\sin ^{-1} x+\sin ^{-1} y+\sin ^{-1} z=(3 \pi / 2)\) then \(x^{10}+y^{10}+z^{10}+\left[3 /\left(x^{10}+y^{10}+z^{10}\right)\right]=\) (a) 0 (b) 2 (c) 4 (d) 3
\(\sin ^{-1}(\sin 4)=\) (a) 4 (b) \(4-2 \pi\) (c) \(\pi-4\) (d) \(4-\pi\)
If \(2 \tan \alpha+\cot \beta=\tan \beta\) then \(\tan (\beta-\alpha)=\) (a) tana (b) cota (c) \(\tan \beta\) (d) \(\cot \beta\)
If \(a, b, c\) the sides of \(\Delta A B C\) are in A.P. and a is the smallest side then cosA equals (a) \([(3 c-4 b) / 2 c]\) (b) \([(3 c-4 b) / 2 b]\) (c) \([(4 c-3 b) / 2 c]\) (d) None of these
What do you think about this solution?
We value your feedback to improve our textbook solutions.