Chapter 19: Problem 1840
\(\sec ^{2}\left(\tan ^{-1} 3\right)+\operatorname{cosec}^{2}\left(\tan ^{-1} 5\right)=\) (a) 276 (b) \([(276) / 25]\) (c) 36 (d) 6
Chapter 19: Problem 1840
\(\sec ^{2}\left(\tan ^{-1} 3\right)+\operatorname{cosec}^{2}\left(\tan ^{-1} 5\right)=\) (a) 276 (b) \([(276) / 25]\) (c) 36 (d) 6
All the tools & learning materials you need for study success - in one app.
Get started for free\(\operatorname{cosec}\left[\tan ^{-1}\left\\{\cos \left[\cot ^{-1}(4 / \sqrt{15})\right]\right\\}\right]=\) (a) \(\sqrt{3}\) (b) \([\sqrt{(} 11) / 2]\) (c) \([\sqrt{(} 47) / 4]\) (d) \([\sqrt{(47) / 2]}\)
If \(A=(\sin 2)(\sin 3)(\sin 5)\) then \(\begin{array}{llll}\text { (a) } a>0 & \text { (b) } A=0 & \text { (c) } A<0 & \text { (d) } A \geq 0\end{array}\)
If \(\cos x+\cos y=0\) and \(\sin x+\sin y=0\) then \(\cos (x-y)=\) (a) 1 (b) \((1 / 2)\) (c) \(-1\) (d) \(-(1 / 2)\)
The number of values of \(\theta\) in the interval \([0,2 \pi]\) satisfying the equation \(\tan 2 \theta \tan \theta=1\) is (a) 4 (b) 5 (c) 6 (d) 7
If \(\tan (x / 2)=\operatorname{cosec} x-\sin x\) then \(\tan ^{2}(x / 2)=\) (a) \(\sqrt{5}+1\) (b) \(\sqrt{5}-1\) (c) \(\sqrt{5}-2\) (d) \(\sqrt{5}+2\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.