Chapter 19: Problem 1848
If the roots of the quadratic equation \(4 x^{2}-4 x+1=\cos ^{2} \theta\) is \(a\) and \(\beta\) then \(\alpha+\beta=\) (a) \(\cos ^{2}(\theta / 2)\) (b) \(\sin ^{2}(\theta / 2)\) (c) 1 (d) \(2 \cos ^{2}(\theta / 2)\)
Chapter 19: Problem 1848
If the roots of the quadratic equation \(4 x^{2}-4 x+1=\cos ^{2} \theta\) is \(a\) and \(\beta\) then \(\alpha+\beta=\) (a) \(\cos ^{2}(\theta / 2)\) (b) \(\sin ^{2}(\theta / 2)\) (c) 1 (d) \(2 \cos ^{2}(\theta / 2)\)
All the tools & learning materials you need for study success - in one app.
Get started for free
If \(\tan (x / 2)=\operatorname{cosec} x-\sin x\) then \(\tan ^{2}(x / 2)=\) (a) \(\sqrt{5}+1\) (b) \(\sqrt{5}-1\) (c) \(\sqrt{5}-2\) (d) \(\sqrt{5}+2\)
If \(\cos x=1-2 \sin ^{2} 32^{\circ}, \alpha, \beta\) are the value of \(x\) between \(0^{\circ}\) and \(360^{\circ}\) with \(\alpha<\beta\) then \(\alpha=\) (a) \(180^{\circ}-\beta\) (b) \(200^{\circ}-\beta\) (c) \((\beta / 4)-10^{\circ}\) (d) \((\beta / 5)-4^{\circ}\)
\(\sin ^{-1}(\sin 10)=\) (a) 10 (b) \(3 \pi-10\) (c) \(10-3 \pi\) (d) \(2 \pi-10\)
The number of solution of the equation \(\sqrt{(3) \sin x+\cos x}=4\) is \(x \in[0,2 \pi]\) (a) 1 (b) 2 (c) 0 (d) 3
If \(\cos ^{-1} x-\sin ^{-1} x=(\pi / 4)\) then \(x=\) (a) \([\sqrt{\\{} 2-\sqrt{2}\\} / 2]\) (b) \([\sqrt{\\{2}+\sqrt{2}\\} / 2]\) (c) \(\sqrt{2}-1\) (d) \(\sqrt{2}+1\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.