Chapter 19: Problem 1849
\(\cot ^{-1} 1+\cot ^{-1} 3+\cot ^{-1} 5+\cot ^{-1} 7+\cot ^{-1} 8=\) (a) \((\pi / 4)\) (b) \((\pi / 2)\) (c) \((3 \pi / 4)\) (d) \((\pi / 3)\)
Chapter 19: Problem 1849
\(\cot ^{-1} 1+\cot ^{-1} 3+\cot ^{-1} 5+\cot ^{-1} 7+\cot ^{-1} 8=\) (a) \((\pi / 4)\) (b) \((\pi / 2)\) (c) \((3 \pi / 4)\) (d) \((\pi / 3)\)
All the tools & learning materials you need for study success - in one app.
Get started for free\({ }^{\infty} \sum_{r=1} \tan ^{-1}\left(1 / 2 r^{2}\right)=\) (a) \((\pi / 4)\) (b) \((\pi / 2)\) (c) \(\tan ^{-1}(\mathrm{n})-(\pi / 4)\) (d) \(\tan ^{-1}(n+1)-(\pi / 4)\)
The number of values of \(\theta\) in the interval \([0,2 \pi]\) satisfying the equation \(\tan 2 \theta \tan \theta=1\) is (a) 4 (b) 5 (c) 6 (d) 7
The value of \(\left.\operatorname{cosec}^{-1} \sqrt{5}+\operatorname{cosec}^{-1} \sqrt{(} 65\right)+\operatorname{cosec}^{-1} \sqrt{(325)}+\ldots+\infty\) is (a) \(\pi\) (b) \((3 \pi / 4)\) (c) \((\pi / 4)\) (d) \((\pi / 2)\)
If \(\sin ^{-1} x+\sin ^{-1} y+\sin ^{-1} z=[(2 \pi) / 3]\) then \(\cos ^{-1} x+\cos ^{-1} y+\cos ^{-1} z=\) (a) \((\pi / 3)\) (b) \((5 \pi / 6)\) (c) \((\pi / 2)\) (d) \((3 \pi / 2)\)
\(\sec ^{2}\left(\tan ^{-1} 3\right)+\operatorname{cosec}^{2}\left(\tan ^{-1} 5\right)=\) (a) 276 (b) \([(276) / 25]\) (c) 36 (d) 6
What do you think about this solution?
We value your feedback to improve our textbook solutions.