Chapter 19: Problem 1853
The solution of the equation \(\tan 3 \theta+\cot \theta=0\) is (a) \(\\{(2 k+1)(\pi / 2), k \in z\\}\) (b) \(\\{k \pi, k \in z\\}\) (c) \(\\{(2 k+1)(\pi / 4), k \in z\\}\) (d) \(\\{(2 k+1)(\pi / 6), k \in z\\}\)
Chapter 19: Problem 1853
The solution of the equation \(\tan 3 \theta+\cot \theta=0\) is (a) \(\\{(2 k+1)(\pi / 2), k \in z\\}\) (b) \(\\{k \pi, k \in z\\}\) (c) \(\\{(2 k+1)(\pi / 4), k \in z\\}\) (d) \(\\{(2 k+1)(\pi / 6), k \in z\\}\)
All the tools & learning materials you need for study success - in one app.
Get started for freeIf \(\cos x+\cos y=0\) and \(\sin x+\sin y=0\) then \(\cos (x-y)=\) (a) 1 (b) \((1 / 2)\) (c) \(-1\) (d) \(-(1 / 2)\)
If \(\mathrm{K}\left[\sin 18^{\circ}+\cos 36^{\circ}\right]=5\) then \(\mathrm{K}=\) (a) \(2 \sqrt{5}\) (b) \((\sqrt{5} / 2)\) 4 (d) 5
If \(A=\cos ^{4} \theta+\sin ^{2} \theta, \forall \theta \in R\) then \(A\) lies in the interval (a) \([1,2]\) (b) \([(3 / 4), 1]\) (c) \([(13 / 16), 1]\) (d) \([(3 / 4),(13 / 16)]\)
\({ }^{\infty} \sum_{r=1} \tan ^{-1}\left(1 / 2 r^{2}\right)=\) (a) \((\pi / 4)\) (b) \((\pi / 2)\) (c) \(\tan ^{-1}(\mathrm{n})-(\pi / 4)\) (d) \(\tan ^{-1}(n+1)-(\pi / 4)\)
If \(3 \cos x+4 \sin x=K\) has a possible solution then number of values of integral \(\mathrm{K}\) is (a) 3 (b) 5 (c) 10 (d) 11
What do you think about this solution?
We value your feedback to improve our textbook solutions.