Chapter 19: Problem 1853
The solution of the equation \(\tan 3 \theta+\cot \theta=0\) is (a) \(\\{(2 k+1)(\pi / 2), k \in z\\}\) (b) \(\\{k \pi, k \in z\\}\) (c) \(\\{(2 k+1)(\pi / 4), k \in z\\}\) (d) \(\\{(2 k+1)(\pi / 6), k \in z\\}\)
Chapter 19: Problem 1853
The solution of the equation \(\tan 3 \theta+\cot \theta=0\) is (a) \(\\{(2 k+1)(\pi / 2), k \in z\\}\) (b) \(\\{k \pi, k \in z\\}\) (c) \(\\{(2 k+1)(\pi / 4), k \in z\\}\) (d) \(\\{(2 k+1)(\pi / 6), k \in z\\}\)
All the tools & learning materials you need for study success - in one app.
Get started for free\(\sqrt{(3) \operatorname{cosec} 20^{\circ}-\sec 20^{\circ}=}\) (a) \(-4\) (b) 1 (c) 2 (d) 4
If \(4 \sin ^{-1} x+3 \cos ^{-1} x=2 \pi\), then \(x=\) (a) 1 (b) \(-1\) (c) \((1 / 2)\) (d) \(-(1 / 2)\)
If \(\mathrm{K}\left[\sin 18^{\circ}+\cos 36^{\circ}\right]=5\) then \(\mathrm{K}=\) (a) \(2 \sqrt{5}\) (b) \((\sqrt{5} / 2)\) 4 (d) 5
\(\cos ^{-1}(\cos 8)=\) (a) 8 (b) \(8-2 \pi\) (c) \(\pi-8\) (d) \(2 \pi-8\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.