Chapter 19: Problem 1854
if \(\tan \theta+a b \cot \theta=a+b\) then \(\tan \theta\) (a) a (b) \(\mathrm{b}\) (c) a or \(\mathrm{b}\) (d) \((\pi / 4)\)
Chapter 19: Problem 1854
if \(\tan \theta+a b \cot \theta=a+b\) then \(\tan \theta\) (a) a (b) \(\mathrm{b}\) (c) a or \(\mathrm{b}\) (d) \((\pi / 4)\)
All the tools & learning materials you need for study success - in one app.
Get started for freeIf \(2 \sec ^{2} \alpha-\sec ^{4} \alpha-2 \operatorname{cosec}^{2} \alpha+\operatorname{cosec}^{4} \alpha=(15 / 4)\) then \(\tan ^{2} \alpha=\) (a) \((1 / \sqrt{2})\) (b) \((1 / 2)\) (c) \([1 /(2 \sqrt{2})]\) (d) \((1 / 4)\)
If \(\cos (\alpha+\beta)=(4 / 5), \sin (\alpha-\beta)=(5 / 13), 0<\alpha, \beta<(\pi / 4)\) then \(\cot 2 \alpha=\) (a) \((12 / 19)\) (b) \((7 / 20)\) (c) \((16 / 25)\) (d) \((33 / 56)\)
There is a bridge of the length \(h\) on a valley. The angle of depression of a temple lying in a valley from two ends of a bridge are \(\alpha\) and \(\beta\), then the height of the bridge from top of the temple \(=\) (a) \([(h \tan \alpha \tan \beta) /(\tan \alpha-\tan \beta)]\) (b) \([(h \tan \alpha \tan \beta) /(\tan \alpha+\tan \beta)]\) (c) \([(\tan \alpha \tan \beta) /\\{h(\tan \alpha-\tan \beta)\\}]\) (d) \([\\{h(\tan \alpha+\tan \beta)\\} /(\tan \alpha \tan \beta)]\)
\(\sin ^{-1}(\sin 2)+\sin ^{-1}(\sin 4)+\sin ^{-1}(\sin 6)=\) (a) \(\pi-12\) (b) 0 (c) 12 (d) \(12-\pi\)
If \(A=\cos ^{4} \theta+\sin ^{2} \theta, \forall \theta \in R\) then \(A\) lies in the interval (a) \([1,2]\) (b) \([(3 / 4), 1]\) (c) \([(13 / 16), 1]\) (d) \([(3 / 4),(13 / 16)]\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.