Chapter 19: Problem 1862
\(15 \sin ^{4} x+10 \cos ^{4} x=6\) then \(\tan ^{2} x=\) (a) \((2 / 5)\) (b) \((1 / 3)\) (c) \((3 / 5)\) (d) \((2 / 3)\)
Chapter 19: Problem 1862
\(15 \sin ^{4} x+10 \cos ^{4} x=6\) then \(\tan ^{2} x=\) (a) \((2 / 5)\) (b) \((1 / 3)\) (c) \((3 / 5)\) (d) \((2 / 3)\)
All the tools & learning materials you need for study success - in one app.
Get started for freeThe number of solution of \(\cos x+\cos 2 x+\cos 3 x+\cos 4 x=0\) \(\mathrm{x} \in[0,2 \pi]\) is (a) 4 (b) 5 (c) 6 (d) 7
Which of the following equation has no solution (a) \(4 \sin \theta+3 \cos \theta=1\) (b) \(\operatorname{cosec} \theta \cdot \sec \theta=1\) (c) \(\sin \theta \cdot \cos \theta=(1 / 2)\) (d) \(\operatorname{cosec} \theta-\sec \theta=\operatorname{cosec} \theta \cdot \sec \theta\)
\(\sec ^{2}\left(\tan ^{-1} 3\right)+\operatorname{cosec}^{2}\left(\tan ^{-1} 5\right)=\) (a) 276 (b) \([(276) / 25]\) (c) 36 (d) 6
If \(2 \sec ^{2} \alpha-\sec ^{4} \alpha-2 \operatorname{cosec}^{2} \alpha+\operatorname{cosec}^{4} \alpha=(15 / 4)\) then \(\tan ^{2} \alpha=\) (a) \((1 / \sqrt{2})\) (b) \((1 / 2)\) (c) \([1 /(2 \sqrt{2})]\) (d) \((1 / 4)\)
If \(\cos \theta+\sec \theta=2\) then \(\cos ^{2012} \theta+\sec ^{2012} \theta=\) (a) \(2^{2012}\) (b) \(2^{2013}\) (c) 2 (d) 0
What do you think about this solution?
We value your feedback to improve our textbook solutions.