Chapter 19: Problem 1862
\(15 \sin ^{4} x+10 \cos ^{4} x=6\) then \(\tan ^{2} x=\) (a) \((2 / 5)\) (b) \((1 / 3)\) (c) \((3 / 5)\) (d) \((2 / 3)\)
Chapter 19: Problem 1862
\(15 \sin ^{4} x+10 \cos ^{4} x=6\) then \(\tan ^{2} x=\) (a) \((2 / 5)\) (b) \((1 / 3)\) (c) \((3 / 5)\) (d) \((2 / 3)\)
All the tools & learning materials you need for study success - in one app.
Get started for freeIf \(\cos (\alpha+\beta)=(4 / 5), \sin (\alpha-\beta)=(5 / 13), 0<\alpha, \beta<(\pi / 4)\) then \(\cot 2 \alpha=\) (a) \((12 / 19)\) (b) \((7 / 20)\) (c) \((16 / 25)\) (d) \((33 / 56)\)
\(\tan ^{-1}(\tan 4)-\tan ^{-1}(\tan (-6))+\cos ^{-1}(\cos 10)=\) (a) 16 (b) \(\pi\) (c) \(-\pi\) (d) \(5 \pi-12\)
\(\operatorname{cosec}\left[\tan ^{-1}\left\\{\cos \left[\cot ^{-1}(4 / \sqrt{15})\right]\right\\}\right]=\) (a) \(\sqrt{3}\) (b) \([\sqrt{(} 11) / 2]\) (c) \([\sqrt{(} 47) / 4]\) (d) \([\sqrt{(47) / 2]}\)
If \(2 \tan \alpha+\cot \beta=\tan \beta\) then \(\tan (\beta-\alpha)=\) (a) tana (b) cota (c) \(\tan \beta\) (d) \(\cot \beta\)
If \(\sin x \cos y=(1 / 8)\) and \(2 \cot x=3 \cot y\) then \(\sin (x+y)=\) (a) \((1 / 16)\) (b) \((5 / 16)\) (c) \((1 / 8)\) (d) \((5 / 8)\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.