Chapter 19: Problem 1865
\(\cos (x-y)=a, \cos (x+y) \Rightarrow \cot x \cot y=\) (a) \([(a-1) /(a+1)]\) (b) \([(a+1) /(a-1)]\) (c) \(a-1\) (d) \(a+1\)
Chapter 19: Problem 1865
\(\cos (x-y)=a, \cos (x+y) \Rightarrow \cot x \cot y=\) (a) \([(a-1) /(a+1)]\) (b) \([(a+1) /(a-1)]\) (c) \(a-1\) (d) \(a+1\)
All the tools & learning materials you need for study success - in one app.
Get started for freeThere is a bridge of the length \(h\) on a valley. The angle of depression of a temple lying in a valley from two ends of a bridge are \(\alpha\) and \(\beta\), then the height of the bridge from top of the temple \(=\) (a) \([(h \tan \alpha \tan \beta) /(\tan \alpha-\tan \beta)]\) (b) \([(h \tan \alpha \tan \beta) /(\tan \alpha+\tan \beta)]\) (c) \([(\tan \alpha \tan \beta) /\\{h(\tan \alpha-\tan \beta)\\}]\) (d) \([\\{h(\tan \alpha+\tan \beta)\\} /(\tan \alpha \tan \beta)]\)
\(\sqrt{(3) \operatorname{cosec} 20^{\circ}-\sec 20^{\circ}=}\) (a) \(-4\) (b) 1 (c) 2 (d) 4
If \(4 \cot ^{2} \alpha-16 \cot \alpha+15<0\) and \(\alpha \in R\) then cota lies in interval (a) \([(3 / 2),(5 / 2)]\) (b) \([0,(3 / 2)]\) (c) \([0,(5 / 2)]\) (d) \([(5 / 2), \infty]\)
\(\sin ^{2}(4 \pi / 3)+\sin (\pi / 6)\) then \(A=\) (a) \((3 / 4)\) (b) \((5 / 4)\) (c) \((5 / 2)\) (d) \((4 / 5)\)
\(\sin ^{-1}(\sin 10)=\) (a) 10 (b) \(3 \pi-10\) (c) \(10-3 \pi\) (d) \(2 \pi-10\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.