Chapter 19: Problem 1865
\(\cos (x-y)=a, \cos (x+y) \Rightarrow \cot x \cot y=\) (a) \([(a-1) /(a+1)]\) (b) \([(a+1) /(a-1)]\) (c) \(a-1\) (d) \(a+1\)
Chapter 19: Problem 1865
\(\cos (x-y)=a, \cos (x+y) \Rightarrow \cot x \cot y=\) (a) \([(a-1) /(a+1)]\) (b) \([(a+1) /(a-1)]\) (c) \(a-1\) (d) \(a+1\)
All the tools & learning materials you need for study success - in one app.
Get started for freeIf \(\cos \theta+\sec \theta=2\) then \(\cos ^{2012} \theta+\sec ^{2012} \theta=\) (a) \(2^{2012}\) (b) \(2^{2013}\) (c) 2 (d) 0
If \(\cos x=1-2 \sin ^{2} 32^{\circ}, \alpha, \beta\) are the value of \(x\) between \(0^{\circ}\) and \(360^{\circ}\) with \(\alpha<\beta\) then \(\alpha=\) (a) \(180^{\circ}-\beta\) (b) \(200^{\circ}-\beta\) (c) \((\beta / 4)-10^{\circ}\) (d) \((\beta / 5)-4^{\circ}\)
The number of values of \(\theta\) in the interval \([0,2 \pi]\) satisfying the equation \(\tan 2 \theta \tan \theta=1\) is (a) 4 (b) 5 (c) 6 (d) 7
\(\operatorname{cosec}\left[\tan ^{-1}\left\\{\cos \left[\cot ^{-1}(4 / \sqrt{15})\right]\right\\}\right]=\) (a) \(\sqrt{3}\) (b) \([\sqrt{(} 11) / 2]\) (c) \([\sqrt{(} 47) / 4]\) (d) \([\sqrt{(47) / 2]}\)
\(A=\tan \left[\sin ^{-1}(3 / 5)+\cot ^{-1}(3 / 2)\right]\) then \(A=\) (a) \((17 / 2)\) (b) \((17 / 6)\) (c) \((17 / 12)\) (d) \((6 / 17)\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.