Chapter 19: Problem 1867
If \(a, b, c\) the sides of \(\Delta A B C\) are in A.P. and a is the smallest side then cosA equals (a) \([(3 c-4 b) / 2 c]\) (b) \([(3 c-4 b) / 2 b]\) (c) \([(4 c-3 b) / 2 c]\) (d) None of these
Chapter 19: Problem 1867
If \(a, b, c\) the sides of \(\Delta A B C\) are in A.P. and a is the smallest side then cosA equals (a) \([(3 c-4 b) / 2 c]\) (b) \([(3 c-4 b) / 2 b]\) (c) \([(4 c-3 b) / 2 c]\) (d) None of these
All the tools & learning materials you need for study success - in one app.
Get started for free\(\cos ^{2}\left[727(1 / 2)^{\circ}\right]-\cos ^{2}\left[397(1 / 2)^{\circ}\right]=\) (a) \((3 / 4)\) (b) \((1 / \sqrt{2})\) (c) \((1 / 2)\) (d) \([1 /(2 \sqrt{2})]\)
If \(\cos \theta+\sec \theta=2\) then \(\cos ^{2012} \theta+\sec ^{2012} \theta=\) (a) \(2^{2012}\) (b) \(2^{2013}\) (c) 2 (d) 0
The angle of depression of the top and bottom of a tower observed from top of a lighthouse of 300 meter height are \(30^{\circ}\) and \(60^{\circ}\) respectively then the height of the tower is (a) 300 meter (b) \(100 \mathrm{~m}\) (c) \(200 \mathrm{~m}\) (d) \(50 \mathrm{~m}\)
If \(\triangle A B C, \sin A+\cos B=0\) then range of angle \(A\) is (a) \([0,(\pi / 4)]\) (b) \([0,(\pi / 6)]\) (c) \([0,(\pi / 3)]\) (d) \([(\pi / 6),(\pi / 4)]\)
If \(2+12 \cos \theta-16 \cos ^{3} \theta=A\), then \(A\) lies in the interval is (a) \([-2,-1]\) (b) \([-2,1]\) (c) \([-6,2]\) (d) \([-2,6]\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.