Chapter 19: Problem 1871
If \(4 \sin ^{-1} x+3 \cos ^{-1} x=2 \pi\), then \(x=\) (a) 1 (b) \(-1\) (c) \((1 / 2)\) (d) \(-(1 / 2)\)
Chapter 19: Problem 1871
If \(4 \sin ^{-1} x+3 \cos ^{-1} x=2 \pi\), then \(x=\) (a) 1 (b) \(-1\) (c) \((1 / 2)\) (d) \(-(1 / 2)\)
All the tools & learning materials you need for study success - in one app.
Get started for freeThe number of solution of the equation \(\sqrt{(3) \sin x+\cos x}=4\) is \(x \in[0,2 \pi]\) (a) 1 (b) 2 (c) 0 (d) 3
If \(\tan (x / 2)=\operatorname{cosec} x-\sin x\) then \(\tan ^{2}(x / 2)=\) (a) \(\sqrt{5}+1\) (b) \(\sqrt{5}-1\) (c) \(\sqrt{5}-2\) (d) \(\sqrt{5}+2\)
If \(3 \cos x+4 \sin x=K\) has a possible solution then number of values of integral \(\mathrm{K}\) is (a) 3 (b) 5 (c) 10 (d) 11
\(15 \sin ^{4} x+10 \cos ^{4} x=6\) then \(\tan ^{2} x=\) (a) \((2 / 5)\) (b) \((1 / 3)\) (c) \((3 / 5)\) (d) \((2 / 3)\)
If \(\sin A=3 \sin (A+2 B)\) angle \(B\) is acute and \(A\) is obtuse: then (a) \(\tan \mathrm{B}=(1 / \sqrt{2})\) (b) \(\tan B>(1 / \sqrt{2})\) (c) \(\tan \mathrm{B}<(1 / \sqrt{2})\) (d) \(0<\tan B<(1 / \sqrt{2})\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.