Chapter 19: Problem 1872
\(\cot \left[\cos ^{-1}(3 / 4)+\sin ^{-1}(3 / 4)-\sec ^{-1} 3\right]=\) (a) \(\sqrt{2}\) (b) \(\sqrt{3}\) (c) \(2 \sqrt{3}\) (d) \(2 \sqrt{2}\)
Chapter 19: Problem 1872
\(\cot \left[\cos ^{-1}(3 / 4)+\sin ^{-1}(3 / 4)-\sec ^{-1} 3\right]=\) (a) \(\sqrt{2}\) (b) \(\sqrt{3}\) (c) \(2 \sqrt{3}\) (d) \(2 \sqrt{2}\)
All the tools & learning materials you need for study success - in one app.
Get started for free
If \(\cos (\alpha+\beta)=(4 / 5), \sin (\alpha-\beta)=(5 / 13), 0<\alpha, \beta<(\pi / 4)\) then \(\cot 2 \alpha=\) (a) \((12 / 19)\) (b) \((7 / 20)\) (c) \((16 / 25)\) (d) \((33 / 56)\)
If the roots of the quadratic equation \(4 x^{2}-4 x+1=\cos ^{2} \theta\) is \(a\) and \(\beta\) then \(\alpha+\beta=\) (a) \(\cos ^{2}(\theta / 2)\) (b) \(\sin ^{2}(\theta / 2)\) (c) 1 (d) \(2 \cos ^{2}(\theta / 2)\)
\(\sin ^{-1}(\sin 2)+\sin ^{-1}(\sin 4)+\sin ^{-1}(\sin 6)=\) (a) \(\pi-12\) (b) 0 (c) 12 (d) \(12-\pi\)
The number of values \(x\) satisfying the equation \(\left.\left.\cot ^{-1}[\sqrt{\\{x}(x+1)\\}\right]+\cos ^{-1}\left[\sqrt{(} x^{2}+x+1\right)\right]=(\pi / 2)\) is (a) 0 (b) 1 (c) 2 (d) 3
\(\tan ^{-1}(\tan 4)-\tan ^{-1}(\tan (-6))+\cos ^{-1}(\cos 10)=\) (a) 16 (b) \(\pi\) (c) \(-\pi\) (d) \(5 \pi-12\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.