Chapter 19: Problem 1872
\(\cot \left[\cos ^{-1}(3 / 4)+\sin ^{-1}(3 / 4)-\sec ^{-1} 3\right]=\) (a) \(\sqrt{2}\) (b) \(\sqrt{3}\) (c) \(2 \sqrt{3}\) (d) \(2 \sqrt{2}\)
Chapter 19: Problem 1872
\(\cot \left[\cos ^{-1}(3 / 4)+\sin ^{-1}(3 / 4)-\sec ^{-1} 3\right]=\) (a) \(\sqrt{2}\) (b) \(\sqrt{3}\) (c) \(2 \sqrt{3}\) (d) \(2 \sqrt{2}\)
All the tools & learning materials you need for study success - in one app.
Get started for freeIf \(\cos ^{-1} x-\sin ^{-1} x=(\pi / 4)\) then \(x=\) (a) \([\sqrt{\\{} 2-\sqrt{2}\\} / 2]\) (b) \([\sqrt{\\{2}+\sqrt{2}\\} / 2]\) (c) \(\sqrt{2}-1\) (d) \(\sqrt{2}+1\)
If \(\cos x=1-2 \sin ^{2} 32^{\circ}, \alpha, \beta\) are the value of \(x\) between \(0^{\circ}\) and \(360^{\circ}\) with \(\alpha<\beta\) then \(\alpha=\) (a) \(180^{\circ}-\beta\) (b) \(200^{\circ}-\beta\) (c) \((\beta / 4)-10^{\circ}\) (d) \((\beta / 5)-4^{\circ}\)
\(\tan ^{-1}(1 / 4)+\tan ^{-1}(2 / 9)=\) (a) \((1 / 2) \cos ^{-1}(3 / 5)\) (b) \((1 / 2) \sin ^{-1}(4 / 5)\) (c) \((1 / 2) \tan ^{-1}(3 / 5)\) (d) \(\tan ^{-1}(8 / 9)\)
If \(\sin ^{-1} x-\cos ^{-1} x<0\) then
(a) \(-1 \leq x<(1 / \sqrt{2})\)
(b) \(-1
If \(\tan A-\tan B=m, \cot B-\cot A=n\) then \(\tan (A-B)=\) (a) \([(\mathrm{m}+\mathrm{n}) / \mathrm{mn}]\) (b) \([\mathrm{mn} /(\mathrm{m}+\mathrm{n})]\) (c) \([(\mathrm{m}-\mathrm{n}) / \mathrm{mn}]\) (d) \([\mathrm{mn} /(\mathrm{n}-\mathrm{m})]\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.