Chapter 19: Problem 1875
If the lengths of the sides are \(1, \sin x, \cos x\) in a triangle \(A B C\) then
the greatest value of the angle in \(\triangle A B C\) is \([0
Chapter 19: Problem 1875
If the lengths of the sides are \(1, \sin x, \cos x\) in a triangle \(A B C\) then
the greatest value of the angle in \(\triangle A B C\) is \([0
All the tools & learning materials you need for study success - in one app.
Get started for freeif \(\tan \theta+a b \cot \theta=a+b\) then \(\tan \theta\) (a) a (b) \(\mathrm{b}\) (c) a or \(\mathrm{b}\) (d) \((\pi / 4)\)
If \(\sin \left(120^{\circ}-\alpha\right)=\sin \left(120^{\circ}-\beta\right)\) and \(0<\alpha, \beta<\pi\) then all values of \(\alpha, \beta\) are given by (a) \(\alpha+\beta=(\pi / 3)\) (b) \(\alpha=\beta\) (c) \(\alpha=\beta\) or \(\alpha+\beta=(\pi / 3)\) (d) \(a+\beta=0\)
If \(\cos \theta+\sec \theta=2\) then \(\cos ^{2012} \theta+\sec ^{2012} \theta=\) (a) \(2^{2012}\) (b) \(2^{2013}\) (c) 2 (d) 0
If \(A=\cos ^{4} \theta+\sin ^{2} \theta, \forall \theta \in R\) then \(A\) lies in the interval (a) \([1,2]\) (b) \([(3 / 4), 1]\) (c) \([(13 / 16), 1]\) (d) \([(3 / 4),(13 / 16)]\)
The angle of depression for two consecutive km stones on a horizontal road observed on the opposite sides of plane from a plane are \(\alpha\) and \(\beta\) respectively and if the height of the plane is \(h\) then \(h=\) (a) \([(\tan \alpha-\tan \beta) /(\tan \alpha \tan \beta)]\) (b) \([(\tan \alpha \tan \beta) /(\tan \alpha-\tan \beta)]\) (c) \([(\tan \alpha+\tan \beta) /(\tan \alpha \tan \beta)]\) (d) \([(\tan \alpha \tan \beta) /(\tan \alpha+\tan \beta)]\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.