Chapter 19: Problem 1875
If the lengths of the sides are \(1, \sin x, \cos x\) in a triangle \(A B C\) then
the greatest value of the angle in \(\triangle A B C\) is \([0
Chapter 19: Problem 1875
If the lengths of the sides are \(1, \sin x, \cos x\) in a triangle \(A B C\) then
the greatest value of the angle in \(\triangle A B C\) is \([0
All the tools & learning materials you need for study success - in one app.
Get started for freeThe number of values of \(\theta\) in the interval \([0,2 \pi]\) satisfying the equation \(\tan 2 \theta \tan \theta=1\) is (a) 4 (b) 5 (c) 6 (d) 7
\(\tan 20^{\circ}+4 \sin 20^{\circ}=\) (a) \((\sqrt{3} / 2)\) (b) \((1 / 2)\) (c) \(\sqrt{3}\) (d) \((1 / \sqrt{3})\)
If \(a, b, c\) the sides of \(\Delta A B C\) are in A.P. and a is the smallest side then cosA equals (a) \([(3 c-4 b) / 2 c]\) (b) \([(3 c-4 b) / 2 b]\) (c) \([(4 c-3 b) / 2 c]\) (d) None of these
Right circular cone has a height \(40 \mathrm{~cm}\) and its semi vertical angle is \(45^{\circ}\) then radius of its base circle is (a) \(40 \mathrm{~cm}\) (b) \(80 \mathrm{~cm}\) (c) \([(40 \sqrt{3}) / 2] \mathrm{cm}\) (d) \(20 \mathrm{~cm}\)
If \(\cos \mathrm{A}=(1 / 7)\) and \(\cos \mathrm{B}=(13 / 14), 0<\mathrm{A}, \mathrm{B}<(\pi / 2)\), then \(A-B=\) (a) \((\pi / 2)\) (b) \((\pi / 3)\) (c) \((\pi / 4)\) (d) \((\pi / 6)\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.