Chapter 19: Problem 1876
The number of solution of the equation \(\sqrt{(3) \sin x+\cos x}=4\) is \(x \in[0,2 \pi]\) (a) 1 (b) 2 (c) 0 (d) 3
Chapter 19: Problem 1876
The number of solution of the equation \(\sqrt{(3) \sin x+\cos x}=4\) is \(x \in[0,2 \pi]\) (a) 1 (b) 2 (c) 0 (d) 3
All the tools & learning materials you need for study success - in one app.
Get started for freeIf \(\left.\tan ^{-1}\left[\left\\{\sqrt{(} 1+x^{2}\right)-1\right\\} / x\right]=(3 / 10)\) then \(x=\) (a) \(\tan (3 / 10)\) (b) \(\tan (4 / 10)\) (c) \(\tan (10 / 3)\) (d) \(\tan (6 / 10)\)
If \(\sin \alpha-\sin \beta=m\) and \(\cos \alpha-\cos \beta=n\) then \(\cos (\alpha-\beta)=\) (a) \(\left[\left(2+m^{2}+n^{2}\right) / 2\right]\) (b) \(\left[\left(2-m^{2}-n^{2}\right) / 2\right]\) (c) \(\left[\left(m^{2}+n^{2}\right) / 2\right]\) (d) \(-\left[\left(m^{2}+n^{2}\right) / 2\right]\)
\(\sin ^{-1}(\sin 4)=\) (a) 4 (b) \(4-2 \pi\) (c) \(\pi-4\) (d) \(4-\pi\)
The number of values of \(\theta\) in the interval \([0,4 \pi]\) satisfying the equation \(2 \sin ^{2} \theta-\cos 2 \theta=0\) (a) 4 (b) 8 (c) 2 (d) 6
What do you think about this solution?
We value your feedback to improve our textbook solutions.