Chapter 19: Problem 1879
The number of values of \(\theta\) in the interval \([0,4 \pi]\) satisfying the equation \(2 \sin ^{2} \theta-\cos 2 \theta=0\) (a) 4 (b) 8 (c) 2 (d) 6
Chapter 19: Problem 1879
The number of values of \(\theta\) in the interval \([0,4 \pi]\) satisfying the equation \(2 \sin ^{2} \theta-\cos 2 \theta=0\) (a) 4 (b) 8 (c) 2 (d) 6
All the tools & learning materials you need for study success - in one app.
Get started for free
\(\sin ^{2}(4 \pi / 3)+\sin (\pi / 6)\) then \(A=\) (a) \((3 / 4)\) (b) \((5 / 4)\) (c) \((5 / 2)\) (d) \((4 / 5)\)
If \([(3 \sin 2 \theta) /(5+4 \cos 2 \theta)]=1\) then \(\tan \theta=\) (a)1 (b) \((1 / 3)\) (c) 3 (d) \((1 / 4)\)
The number of values \(x\) satisfying the equation \(\left.\left.\cot ^{-1}[\sqrt{\\{x}(x+1)\\}\right]+\cos ^{-1}\left[\sqrt{(} x^{2}+x+1\right)\right]=(\pi / 2)\) is (a) 0 (b) 1 (c) 2 (d) 3
\(\cos ^{2}\left[727(1 / 2)^{\circ}\right]-\cos ^{2}\left[397(1 / 2)^{\circ}\right]=\) (a) \((3 / 4)\) (b) \((1 / \sqrt{2})\) (c) \((1 / 2)\) (d) \([1 /(2 \sqrt{2})]\)
\(\sin ^{-1}(\sin 4)=\) (a) 4 (b) \(4-2 \pi\) (c) \(\pi-4\) (d) \(4-\pi\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.