Chapter 19: Problem 1884
\(\sqrt{(3) \operatorname{cosec} 20^{\circ}-\sec 20^{\circ}=}\) (a) \(-4\) (b) 1 (c) 2 (d) 4
Chapter 19: Problem 1884
\(\sqrt{(3) \operatorname{cosec} 20^{\circ}-\sec 20^{\circ}=}\) (a) \(-4\) (b) 1 (c) 2 (d) 4
All the tools & learning materials you need for study success - in one app.
Get started for free\(\sin ^{-1}(\sin 2)+\sin ^{-1}(\sin 4)+\sin ^{-1}(\sin 6)=\) (a) \(\pi-12\) (b) 0 (c) 12 (d) \(12-\pi\)
if \(\tan \theta+a b \cot \theta=a+b\) then \(\tan \theta\) (a) a (b) \(\mathrm{b}\) (c) a or \(\mathrm{b}\) (d) \((\pi / 4)\)
\(\tan ^{-1}(\tan 4)-\tan ^{-1}(\tan (-6))+\cos ^{-1}(\cos 10)=\) (a) 16 (b) \(\pi\) (c) \(-\pi\) (d) \(5 \pi-12\)
There is a bridge of the length \(h\) on a valley. The angle of depression of a temple lying in a valley from two ends of a bridge are \(\alpha\) and \(\beta\), then the height of the bridge from top of the temple \(=\) (a) \([(h \tan \alpha \tan \beta) /(\tan \alpha-\tan \beta)]\) (b) \([(h \tan \alpha \tan \beta) /(\tan \alpha+\tan \beta)]\) (c) \([(\tan \alpha \tan \beta) /\\{h(\tan \alpha-\tan \beta)\\}]\) (d) \([\\{h(\tan \alpha+\tan \beta)\\} /(\tan \alpha \tan \beta)]\)
If \(2 \tan \alpha+\cot \beta=\tan \beta\) then \(\tan (\beta-\alpha)=\) (a) tana (b) cota (c) \(\tan \beta\) (d) \(\cot \beta\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.