Chapter 19: Problem 1884
\(\sqrt{(3) \operatorname{cosec} 20^{\circ}-\sec 20^{\circ}=}\) (a) \(-4\) (b) 1 (c) 2 (d) 4
Chapter 19: Problem 1884
\(\sqrt{(3) \operatorname{cosec} 20^{\circ}-\sec 20^{\circ}=}\) (a) \(-4\) (b) 1 (c) 2 (d) 4
All the tools & learning materials you need for study success - in one app.
Get started for free
If \(\sin A=3 \sin (A+2 B)\) angle \(B\) is acute and \(A\) is obtuse: then (a) \(\tan \mathrm{B}=(1 / \sqrt{2})\) (b) \(\tan B>(1 / \sqrt{2})\) (c) \(\tan \mathrm{B}<(1 / \sqrt{2})\) (d) \(0<\tan B<(1 / \sqrt{2})\)
If \(\cos x+\cos y=0\) and \(\sin x+\sin y=0\) then \(\cos (x-y)=\) (a) 1 (b) \((1 / 2)\) (c) \(-1\) (d) \(-(1 / 2)\)
If \(\cos x=1-2 \sin ^{2} 32^{\circ}, \alpha, \beta\) are the value of \(x\) between \(0^{\circ}\) and \(360^{\circ}\) with \(\alpha<\beta\) then \(\alpha=\) (a) \(180^{\circ}-\beta\) (b) \(200^{\circ}-\beta\) (c) \((\beta / 4)-10^{\circ}\) (d) \((\beta / 5)-4^{\circ}\)
\(\sin ^{-1}(\sin 10)=\) (a) 10 (b) \(3 \pi-10\) (c) \(10-3 \pi\) (d) \(2 \pi-10\)
If \(\Delta \mathrm{ABC}, \mathrm{a}=2, \mathrm{~b}=3\) and \(\sin \mathrm{A}=(1 / 3)\), then \(\mathrm{B}=\) (a) \((\pi / 4)\) (b) \((\pi / 6)\) (c) \((\pi / 2)\) (d) \((\pi / 3)\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.