Chapter 19: Problem 1888
If \(\cos ^{-1} x-\sin ^{-1} x=(\pi / 4)\) then \(x=\) (a) \([\sqrt{\\{} 2-\sqrt{2}\\} / 2]\) (b) \([\sqrt{\\{2}+\sqrt{2}\\} / 2]\) (c) \(\sqrt{2}-1\) (d) \(\sqrt{2}+1\)
Chapter 19: Problem 1888
If \(\cos ^{-1} x-\sin ^{-1} x=(\pi / 4)\) then \(x=\) (a) \([\sqrt{\\{} 2-\sqrt{2}\\} / 2]\) (b) \([\sqrt{\\{2}+\sqrt{2}\\} / 2]\) (c) \(\sqrt{2}-1\) (d) \(\sqrt{2}+1\)
All the tools & learning materials you need for study success - in one app.
Get started for freeIf \(\sin A=3 \sin (A+2 B)\) angle \(B\) is acute and \(A\) is obtuse: then (a) \(\tan \mathrm{B}=(1 / \sqrt{2})\) (b) \(\tan B>(1 / \sqrt{2})\) (c) \(\tan \mathrm{B}<(1 / \sqrt{2})\) (d) \(0<\tan B<(1 / \sqrt{2})\)
\(\cot \left[\cos ^{-1}(3 / 4)+\sin ^{-1}(3 / 4)-\sec ^{-1} 3\right]=\) (a) \(\sqrt{2}\) (b) \(\sqrt{3}\) (c) \(2 \sqrt{3}\) (d) \(2 \sqrt{2}\)
If \(a, b, c\) the sides of \(\Delta A B C\) are in A.P. and a is the smallest side then cosA equals (a) \([(3 c-4 b) / 2 c]\) (b) \([(3 c-4 b) / 2 b]\) (c) \([(4 c-3 b) / 2 c]\) (d) None of these
The number of values of \(\theta\) in the interval \([0,2 \pi]\) satisfying the equation \(\tan 2 \theta \tan \theta=1\) is (a) 4 (b) 5 (c) 6 (d) 7
If \(\sin ^{-1} x+\sin ^{-1} y+\sin ^{-1} z=(3 \pi / 2)\) then \(x^{10}+y^{10}+z^{10}+\left[3 /\left(x^{10}+y^{10}+z^{10}\right)\right]=\) (a) 0 (b) 2 (c) 4 (d) 3
What do you think about this solution?
We value your feedback to improve our textbook solutions.