Chapter 19: Problem 1888
If \(\cos ^{-1} x-\sin ^{-1} x=(\pi / 4)\) then \(x=\) (a) \([\sqrt{\\{} 2-\sqrt{2}\\} / 2]\) (b) \([\sqrt{\\{2}+\sqrt{2}\\} / 2]\) (c) \(\sqrt{2}-1\) (d) \(\sqrt{2}+1\)
Chapter 19: Problem 1888
If \(\cos ^{-1} x-\sin ^{-1} x=(\pi / 4)\) then \(x=\) (a) \([\sqrt{\\{} 2-\sqrt{2}\\} / 2]\) (b) \([\sqrt{\\{2}+\sqrt{2}\\} / 2]\) (c) \(\sqrt{2}-1\) (d) \(\sqrt{2}+1\)
All the tools & learning materials you need for study success - in one app.
Get started for free\(\sin \left[\cot ^{-1}\left(\cos \left(\tan ^{-1} x\right)\right)\right]=\) (b) \(\left.\sqrt{[}\left(x^{2}+1\right) /\left(x^{2}+2\right)\right]\) (c) \(\left[x / \sqrt{ \left.\left(x^{2}+2\right)\right]}\right.\) (d) \(\left[1 / \sqrt{ \left.\left(x^{2}+2\right)\right]}\right.\)
If \(4 \sin ^{-1} x+3 \cos ^{-1} x=2 \pi\), then \(x=\) (a) 1 (b) \(-1\) (c) \((1 / 2)\) (d) \(-(1 / 2)\)
The number of solution of \(\cos x+\cos 2 x+\cos 3 x+\cos 4 x=0\) \(\mathrm{x} \in[0,2 \pi]\) is (a) 4 (b) 5 (c) 6 (d) 7
\(A=\tan \left[\sin ^{-1}(3 / 5)+\cot ^{-1}(3 / 2)\right]\) then \(A=\) (a) \((17 / 2)\) (b) \((17 / 6)\) (c) \((17 / 12)\) (d) \((6 / 17)\)
\(\tan ^{-1}(\tan 4)-\tan ^{-1}(\tan (-6))+\cos ^{-1}(\cos 10)=\) (a) 16 (b) \(\pi\) (c) \(-\pi\) (d) \(5 \pi-12\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.