Chapter 19: Problem 1889
If \(\sin ^{-1} x-\cos ^{-1} x<0\) then
(a) \(-1 \leq x<(1 / \sqrt{2})\)
(b) \(-1
Chapter 19: Problem 1889
If \(\sin ^{-1} x-\cos ^{-1} x<0\) then
(a) \(-1 \leq x<(1 / \sqrt{2})\)
(b) \(-1
All the tools & learning materials you need for study success - in one app.
Get started for freeThe solution of the equation \(\tan 3 \theta+\cot \theta=0\) is (a) \(\\{(2 k+1)(\pi / 2), k \in z\\}\) (b) \(\\{k \pi, k \in z\\}\) (c) \(\\{(2 k+1)(\pi / 4), k \in z\\}\) (d) \(\\{(2 k+1)(\pi / 6), k \in z\\}\)
If the lengths of the sides are \(1, \sin x, \cos x\) in a triangle \(A B C\) then
the greatest value of the angle in \(\triangle A B C\) is \([0
\(\sin ^{-1}(\sin 4)=\) (a) 4 (b) \(4-2 \pi\) (c) \(\pi-4\) (d) \(4-\pi\)
If \(\sin \alpha-\sin \beta=m\) and \(\cos \alpha-\cos \beta=n\) then \(\cos (\alpha-\beta)=\) (a) \(\left[\left(2+m^{2}+n^{2}\right) / 2\right]\) (b) \(\left[\left(2-m^{2}-n^{2}\right) / 2\right]\) (c) \(\left[\left(m^{2}+n^{2}\right) / 2\right]\) (d) \(-\left[\left(m^{2}+n^{2}\right) / 2\right]\)
\(\cos (x-y)=a, \cos (x+y) \Rightarrow \cot x \cot y=\) (a) \([(a-1) /(a+1)]\) (b) \([(a+1) /(a-1)]\) (c) \(a-1\) (d) \(a+1\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.