Chapter 19: Problem 1892
If \(\sin ^{-1} x+\sin ^{-1} y+\sin ^{-1} z=(3 \pi / 2)\) then \(x^{10}+y^{10}+z^{10}+\left[3 /\left(x^{10}+y^{10}+z^{10}\right)\right]=\) (a) 0 (b) 2 (c) 4 (d) 3
Chapter 19: Problem 1892
If \(\sin ^{-1} x+\sin ^{-1} y+\sin ^{-1} z=(3 \pi / 2)\) then \(x^{10}+y^{10}+z^{10}+\left[3 /\left(x^{10}+y^{10}+z^{10}\right)\right]=\) (a) 0 (b) 2 (c) 4 (d) 3
All the tools & learning materials you need for study success - in one app.
Get started for free
If \(2+12 \cos \theta-16 \cos ^{3} \theta=A\), then \(A\) lies in the interval is (a) \([-2,-1]\) (b) \([-2,1]\) (c) \([-6,2]\) (d) \([-2,6]\)
The angle of elevation of a parachute measured from a point at a height \(60 \mathrm{~m}\) from the surface of a lake is \(30^{\circ}\) and the angle of depression of reflection of parachute seen in the lake from the same point is \(60^{\circ}\). Then height of the parachute from the surface of a lake is (a) \(120 \mathrm{~m}\) (b) \(60 \mathrm{~m}\) (c) \(90 \mathrm{~m}\) (d) \(150 \mathrm{~m}\)
If \(\sin \left(120^{\circ}-\alpha\right)=\sin \left(120^{\circ}-\beta\right)\) and \(0<\alpha, \beta<\pi\) then all values of \(\alpha, \beta\) are given by (a) \(\alpha+\beta=(\pi / 3)\) (b) \(\alpha=\beta\) (c) \(\alpha=\beta\) or \(\alpha+\beta=(\pi / 3)\) (d) \(a+\beta=0\)
There is a bridge of the length \(h\) on a valley. The angle of depression of a temple lying in a valley from two ends of a bridge are \(\alpha\) and \(\beta\), then the height of the bridge from top of the temple \(=\) (a) \([(h \tan \alpha \tan \beta) /(\tan \alpha-\tan \beta)]\) (b) \([(h \tan \alpha \tan \beta) /(\tan \alpha+\tan \beta)]\) (c) \([(\tan \alpha \tan \beta) /\\{h(\tan \alpha-\tan \beta)\\}]\) (d) \([\\{h(\tan \alpha+\tan \beta)\\} /(\tan \alpha \tan \beta)]\)
\(\log \cot 1^{\circ}+\log \cot 2^{\circ}+\log \cot 3^{\circ}+\log \cot 89^{\circ}=\) (a) 0 (b) 1 (c) \((\pi / 4)\) (d) \((\pi / 2)\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.