Chapter 19: Problem 1894
The number of values \(x\) satisfying the equation \(\left.\left.\cot ^{-1}[\sqrt{\\{x}(x+1)\\}\right]+\cos ^{-1}\left[\sqrt{(} x^{2}+x+1\right)\right]=(\pi / 2)\) is (a) 0 (b) 1 (c) 2 (d) 3
Chapter 19: Problem 1894
The number of values \(x\) satisfying the equation \(\left.\left.\cot ^{-1}[\sqrt{\\{x}(x+1)\\}\right]+\cos ^{-1}\left[\sqrt{(} x^{2}+x+1\right)\right]=(\pi / 2)\) is (a) 0 (b) 1 (c) 2 (d) 3
All the tools & learning materials you need for study success - in one app.
Get started for free\(\tan ^{-1}(\tan 4)-\tan ^{-1}(\tan (-6))+\cos ^{-1}(\cos 10)=\) (a) 16 (b) \(\pi\) (c) \(-\pi\) (d) \(5 \pi-12\)
If \(4 \sin ^{-1} x+3 \cos ^{-1} x=2 \pi\), then \(x=\) (a) 1 (b) \(-1\) (c) \((1 / 2)\) (d) \(-(1 / 2)\)
If \(\tan (\cot x)=\cot (\tan x)\) then \(\operatorname{cosec} 2 x=\) (a) \((2 \mathrm{n}+1)(\pi / 2), \mathrm{n} \in \mathbf{z}\) (b) \((2 n+1)(\pi / 4), n \in z\) (c) \([\\{n(n+1) \pi\\} / 2], n \in z\) (d) \((\mathrm{n} \pi / 4), \mathrm{n} \in \mathbf{z}\)
If \(a, b, c\) the sides of \(\Delta A B C\) are in A.P. and a is the smallest side then cosA equals (a) \([(3 c-4 b) / 2 c]\) (b) \([(3 c-4 b) / 2 b]\) (c) \([(4 c-3 b) / 2 c]\) (d) None of these
If \(\cos \mathrm{A}=(1 / 7)\) and \(\cos \mathrm{B}=(13 / 14), 0<\mathrm{A}, \mathrm{B}<(\pi / 2)\), then \(A-B=\) (a) \((\pi / 2)\) (b) \((\pi / 3)\) (c) \((\pi / 4)\) (d) \((\pi / 6)\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.