Chapter 19: Problem 1894
The number of values \(x\) satisfying the equation \(\left.\left.\cot ^{-1}[\sqrt{\\{x}(x+1)\\}\right]+\cos ^{-1}\left[\sqrt{(} x^{2}+x+1\right)\right]=(\pi / 2)\) is (a) 0 (b) 1 (c) 2 (d) 3
Chapter 19: Problem 1894
The number of values \(x\) satisfying the equation \(\left.\left.\cot ^{-1}[\sqrt{\\{x}(x+1)\\}\right]+\cos ^{-1}\left[\sqrt{(} x^{2}+x+1\right)\right]=(\pi / 2)\) is (a) 0 (b) 1 (c) 2 (d) 3
All the tools & learning materials you need for study success - in one app.
Get started for freeIf \(\sin \left(120^{\circ}-\alpha\right)=\sin \left(120^{\circ}-\beta\right)\) and \(0<\alpha, \beta<\pi\) then all values of \(\alpha, \beta\) are given by (a) \(\alpha+\beta=(\pi / 3)\) (b) \(\alpha=\beta\) (c) \(\alpha=\beta\) or \(\alpha+\beta=(\pi / 3)\) (d) \(a+\beta=0\)
If \(\cos ^{-1} x-\sin ^{-1} x=(\pi / 4)\) then \(x=\) (a) \([\sqrt{\\{} 2-\sqrt{2}\\} / 2]\) (b) \([\sqrt{\\{2}+\sqrt{2}\\} / 2]\) (c) \(\sqrt{2}-1\) (d) \(\sqrt{2}+1\)
If \(\cos \theta+\sec \theta=2\) then \(\cos ^{2012} \theta+\sec ^{2012} \theta=\) (a) \(2^{2012}\) (b) \(2^{2013}\) (c) 2 (d) 0
\(x+y=(\pi / 2)\), then range of \(\cos x \cdot \cos y\) is (a) \([-1,1]\) (b) \([0,1]\) (c) \([-(1 / \sqrt{2}),(1 / \sqrt{2})]\) (d) \([-(1 / 2),(1 / 2)]\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.