Chapter 19: Problem 1895
If \(\sin ^{-1}(1-x)-2 \sin ^{-1} x=(\pi / 2)\) then \(x=\) (a) \(0,(1 / 2)\) (b) \(1,(1 / 2)\) (c) 0 (d) \((1 / 2)\)
Chapter 19: Problem 1895
If \(\sin ^{-1}(1-x)-2 \sin ^{-1} x=(\pi / 2)\) then \(x=\) (a) \(0,(1 / 2)\) (b) \(1,(1 / 2)\) (c) 0 (d) \((1 / 2)\)
All the tools & learning materials you need for study success - in one app.
Get started for freeIf \(\cos \theta+\sec \theta=2\) then \(\cos ^{2012} \theta+\sec ^{2012} \theta=\) (a) \(2^{2012}\) (b) \(2^{2013}\) (c) 2 (d) 0
\(A=\tan \left[\sin ^{-1}(3 / 5)+\cot ^{-1}(3 / 2)\right]\) then \(A=\) (a) \((17 / 2)\) (b) \((17 / 6)\) (c) \((17 / 12)\) (d) \((6 / 17)\)
\(\tan \left[(\pi / 4)+(1 / 2) \sin ^{-1}(a / b)\right]-\tan \left[(\pi / 4)-(1 / 2) \sin ^{-1}(a / b)\right]\) (a) \(\left[2 a / \sqrt{ \left.\left(b^{2}-a^{2}\right)\right]}\right.\) (b) \(\left[2 b / \sqrt{ \left.\left(b^{2}-a^{2}\right)\right]}\right.\) (c) \((2 \mathrm{~b} / \mathrm{a})\) (d) \((a / 2 b)\)
The minimum value of \(125 \tan ^{2} \theta+5 \cot ^{2} \theta\) is (a) 5 (b) 25 (c) 125 (d) 50
If \(\cos x=1-2 \sin ^{2} 32^{\circ}, \alpha, \beta\) are the value of \(x\) between \(0^{\circ}\) and \(360^{\circ}\) with \(\alpha<\beta\) then \(\alpha=\) (a) \(180^{\circ}-\beta\) (b) \(200^{\circ}-\beta\) (c) \((\beta / 4)-10^{\circ}\) (d) \((\beta / 5)-4^{\circ}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.