Chapter 19: Problem 1896
\(\tan ^{-1}(1 / 4)+\tan ^{-1}(2 / 9)=\) (a) \((1 / 2) \cos ^{-1}(3 / 5)\) (b) \((1 / 2) \sin ^{-1}(4 / 5)\) (c) \((1 / 2) \tan ^{-1}(3 / 5)\) (d) \(\tan ^{-1}(8 / 9)\)
Chapter 19: Problem 1896
\(\tan ^{-1}(1 / 4)+\tan ^{-1}(2 / 9)=\) (a) \((1 / 2) \cos ^{-1}(3 / 5)\) (b) \((1 / 2) \sin ^{-1}(4 / 5)\) (c) \((1 / 2) \tan ^{-1}(3 / 5)\) (d) \(\tan ^{-1}(8 / 9)\)
All the tools & learning materials you need for study success - in one app.
Get started for freeThere is a bridge of the length \(h\) on a valley. The angle of depression of a temple lying in a valley from two ends of a bridge are \(\alpha\) and \(\beta\), then the height of the bridge from top of the temple \(=\) (a) \([(h \tan \alpha \tan \beta) /(\tan \alpha-\tan \beta)]\) (b) \([(h \tan \alpha \tan \beta) /(\tan \alpha+\tan \beta)]\) (c) \([(\tan \alpha \tan \beta) /\\{h(\tan \alpha-\tan \beta)\\}]\) (d) \([\\{h(\tan \alpha+\tan \beta)\\} /(\tan \alpha \tan \beta)]\)
The number of solution of the equation \(\sqrt{(3) \sin x+\cos x}=4\) is \(x \in[0,2 \pi]\) (a) 1 (b) 2 (c) 0 (d) 3
The value of \(\left.\operatorname{cosec}^{-1} \sqrt{5}+\operatorname{cosec}^{-1} \sqrt{(} 65\right)+\operatorname{cosec}^{-1} \sqrt{(325)}+\ldots+\infty\) is (a) \(\pi\) (b) \((3 \pi / 4)\) (c) \((\pi / 4)\) (d) \((\pi / 2)\)
Right circular cone has a height \(40 \mathrm{~cm}\) and its semi vertical angle is \(45^{\circ}\) then radius of its base circle is (a) \(40 \mathrm{~cm}\) (b) \(80 \mathrm{~cm}\) (c) \([(40 \sqrt{3}) / 2] \mathrm{cm}\) (d) \(20 \mathrm{~cm}\)
\(\sin ^{-1}(\sin 4)=\) (a) 4 (b) \(4-2 \pi\) (c) \(\pi-4\) (d) \(4-\pi\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.