Chapter 19: Problem 1896
\(\tan ^{-1}(1 / 4)+\tan ^{-1}(2 / 9)=\) (a) \((1 / 2) \cos ^{-1}(3 / 5)\) (b) \((1 / 2) \sin ^{-1}(4 / 5)\) (c) \((1 / 2) \tan ^{-1}(3 / 5)\) (d) \(\tan ^{-1}(8 / 9)\)
Chapter 19: Problem 1896
\(\tan ^{-1}(1 / 4)+\tan ^{-1}(2 / 9)=\) (a) \((1 / 2) \cos ^{-1}(3 / 5)\) (b) \((1 / 2) \sin ^{-1}(4 / 5)\) (c) \((1 / 2) \tan ^{-1}(3 / 5)\) (d) \(\tan ^{-1}(8 / 9)\)
All the tools & learning materials you need for study success - in one app.
Get started for free\(\cot \left[\cos ^{-1}(3 / 4)+\sin ^{-1}(3 / 4)-\sec ^{-1} 3\right]=\) (a) \(\sqrt{2}\) (b) \(\sqrt{3}\) (c) \(2 \sqrt{3}\) (d) \(2 \sqrt{2}\)
\(\tan \left[(\pi / 4)+(1 / 2) \sin ^{-1}(a / b)\right]-\tan \left[(\pi / 4)-(1 / 2) \sin ^{-1}(a / b)\right]\) (a) \(\left[2 a / \sqrt{ \left.\left(b^{2}-a^{2}\right)\right]}\right.\) (b) \(\left[2 b / \sqrt{ \left.\left(b^{2}-a^{2}\right)\right]}\right.\) (c) \((2 \mathrm{~b} / \mathrm{a})\) (d) \((a / 2 b)\)
\(\log \cot 1^{\circ}+\log \cot 2^{\circ}+\log \cot 3^{\circ}+\log \cot 89^{\circ}=\) (a) 0 (b) 1 (c) \((\pi / 4)\) (d) \((\pi / 2)\)
If \(\triangle \mathrm{ABC}, \underline{A M} \perp \mathrm{BC}\) and \(\mathrm{AB}=8 \mathrm{~cm}, \mathrm{BC}=11 \mathrm{~cm}\) and \(m \angle B=50^{\circ}\) then area of \(\triangle A B C\) is \(=\) (a) \(28(\mathrm{~cm})^{2}\) (b) \(33.70(\mathrm{~cm})^{2}\) (c) \(38(\mathrm{~cm})^{2}\) (d) \(43.70 \mathrm{~cm}^{2}\)
The solution of the equation \(\tan 3 \theta+\cot \theta=0\) is (a) \(\\{(2 k+1)(\pi / 2), k \in z\\}\) (b) \(\\{k \pi, k \in z\\}\) (c) \(\\{(2 k+1)(\pi / 4), k \in z\\}\) (d) \(\\{(2 k+1)(\pi / 6), k \in z\\}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.