Chapter 19: Problem 1898
\(\tan ^{-1}(\tan 4)-\tan ^{-1}(\tan (-6))+\cos ^{-1}(\cos 10)=\) (a) 16 (b) \(\pi\) (c) \(-\pi\) (d) \(5 \pi-12\)
Chapter 19: Problem 1898
\(\tan ^{-1}(\tan 4)-\tan ^{-1}(\tan (-6))+\cos ^{-1}(\cos 10)=\) (a) 16 (b) \(\pi\) (c) \(-\pi\) (d) \(5 \pi-12\)
All the tools & learning materials you need for study success - in one app.
Get started for freeIf \(2+12 \cos \theta-16 \cos ^{3} \theta=A\), then \(A\) lies in the interval is (a) \([-2,-1]\) (b) \([-2,1]\) (c) \([-6,2]\) (d) \([-2,6]\)
If \(\cos \theta+\sec \theta=2\) then \(\cos ^{2012} \theta+\sec ^{2012} \theta=\) (a) \(2^{2012}\) (b) \(2^{2013}\) (c) 2 (d) 0
If \(\tan (x / 2)=\operatorname{cosec} x-\sin x\) then \(\tan ^{2}(x / 2)=\) (a) \(\sqrt{5}+1\) (b) \(\sqrt{5}-1\) (c) \(\sqrt{5}-2\) (d) \(\sqrt{5}+2\)
If \(\Delta \mathrm{ABC}, \mathrm{a}=2, \mathrm{~b}=3\) and \(\sin \mathrm{A}=(1 / 3)\), then \(\mathrm{B}=\) (a) \((\pi / 4)\) (b) \((\pi / 6)\) (c) \((\pi / 2)\) (d) \((\pi / 3)\)
If \(\sin ^{-1} x+\sin ^{-1} y+\sin ^{-1} z=[(2 \pi) / 3]\) then \(\cos ^{-1} x+\cos ^{-1} y+\cos ^{-1} z=\) (a) \((\pi / 3)\) (b) \((5 \pi / 6)\) (c) \((\pi / 2)\) (d) \((3 \pi / 2)\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.