Chapter 19: Problem 1904
\({ }^{\infty} \sum_{r=1} \tan ^{-1}\left(1 / 2 r^{2}\right)=\) (a) \((\pi / 4)\) (b) \((\pi / 2)\) (c) \(\tan ^{-1}(\mathrm{n})-(\pi / 4)\) (d) \(\tan ^{-1}(n+1)-(\pi / 4)\)
Chapter 19: Problem 1904
\({ }^{\infty} \sum_{r=1} \tan ^{-1}\left(1 / 2 r^{2}\right)=\) (a) \((\pi / 4)\) (b) \((\pi / 2)\) (c) \(\tan ^{-1}(\mathrm{n})-(\pi / 4)\) (d) \(\tan ^{-1}(n+1)-(\pi / 4)\)
All the tools & learning materials you need for study success - in one app.
Get started for freeif \(\tan \theta+a b \cot \theta=a+b\) then \(\tan \theta\) (a) a (b) \(\mathrm{b}\) (c) a or \(\mathrm{b}\) (d) \((\pi / 4)\)
If \(\tan (x / 2)=\operatorname{cosec} x-\sin x\) then \(\tan ^{2}(x / 2)=\) (a) \(\sqrt{5}+1\) (b) \(\sqrt{5}-1\) (c) \(\sqrt{5}-2\) (d) \(\sqrt{5}+2\)
If \(A=\left|\begin{array}{ccc}1 & \sin \theta & 1 \\ -\sin \theta & 1 & \sin \theta \\ -1 & -\sin \theta & 1\end{array}\right|\) then \(\mathrm{A}\) lies in interval (a) \([2,4]\) (b) \([3,4]\) (c) \([1,4]\) (d) \([0,4]\)
If \(2 \tan \alpha+\cot \beta=\tan \beta\) then \(\tan (\beta-\alpha)=\) (a) tana (b) cota (c) \(\tan \beta\) (d) \(\cot \beta\)
If \(\triangle \mathrm{ABC}, \underline{A M} \perp \mathrm{BC}\) and \(\mathrm{AB}=8 \mathrm{~cm}, \mathrm{BC}=11 \mathrm{~cm}\) and \(m \angle B=50^{\circ}\) then area of \(\triangle A B C\) is \(=\) (a) \(28(\mathrm{~cm})^{2}\) (b) \(33.70(\mathrm{~cm})^{2}\) (c) \(38(\mathrm{~cm})^{2}\) (d) \(43.70 \mathrm{~cm}^{2}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.