Chapter 19: Problem 1904
\({ }^{\infty} \sum_{r=1} \tan ^{-1}\left(1 / 2 r^{2}\right)=\) (a) \((\pi / 4)\) (b) \((\pi / 2)\) (c) \(\tan ^{-1}(\mathrm{n})-(\pi / 4)\) (d) \(\tan ^{-1}(n+1)-(\pi / 4)\)
Chapter 19: Problem 1904
\({ }^{\infty} \sum_{r=1} \tan ^{-1}\left(1 / 2 r^{2}\right)=\) (a) \((\pi / 4)\) (b) \((\pi / 2)\) (c) \(\tan ^{-1}(\mathrm{n})-(\pi / 4)\) (d) \(\tan ^{-1}(n+1)-(\pi / 4)\)
All the tools & learning materials you need for study success - in one app.
Get started for freeThe number of solution of the equation \(\sqrt{(3) \sin x+\cos x}=4\) is \(x \in[0,2 \pi]\) (a) 1 (b) 2 (c) 0 (d) 3
\(\cot ^{-1} 1+\cot ^{-1} 3+\cot ^{-1} 5+\cot ^{-1} 7+\cot ^{-1} 8=\) (a) \((\pi / 4)\) (b) \((\pi / 2)\) (c) \((3 \pi / 4)\) (d) \((\pi / 3)\)
If \(\cos \theta+\sec \theta=2\) then \(\cos ^{2012} \theta+\sec ^{2012} \theta=\) (a) \(2^{2012}\) (b) \(2^{2013}\) (c) 2 (d) 0
If \(\triangle \mathrm{ABC}, \underline{A M} \perp \mathrm{BC}\) and \(\mathrm{AB}=8 \mathrm{~cm}, \mathrm{BC}=11 \mathrm{~cm}\) and \(m \angle B=50^{\circ}\) then area of \(\triangle A B C\) is \(=\) (a) \(28(\mathrm{~cm})^{2}\) (b) \(33.70(\mathrm{~cm})^{2}\) (c) \(38(\mathrm{~cm})^{2}\) (d) \(43.70 \mathrm{~cm}^{2}\)
If the roots of the quadratic equation \(x^{2}+A x+B=0\) are \(\tan 30^{\circ}\) and \(\tan 15^{\circ}\) then the value of \(A-B=\) (a) 1 (b) \(-1\) (c) 2 (d) 3
What do you think about this solution?
We value your feedback to improve our textbook solutions.