Chapter 2: Problem 101
If \(z=x+i y, x, y \in R\) and \(3 x+(3 x-y) i=4-6 i\) then \(z=\) (a) \((4 / 3)+\mathrm{i} 10\) (b) \((4 / 3)-\mathrm{i} 10\) (c) \([(-4) / 3]+\mathrm{i} 10\) (d) \([(-4) / 3]-\mathrm{i} 10\)
Chapter 2: Problem 101
If \(z=x+i y, x, y \in R\) and \(3 x+(3 x-y) i=4-6 i\) then \(z=\) (a) \((4 / 3)+\mathrm{i} 10\) (b) \((4 / 3)-\mathrm{i} 10\) (c) \([(-4) / 3]+\mathrm{i} 10\) (d) \([(-4) / 3]-\mathrm{i} 10\)
All the tools & learning materials you need for study success - in one app.
Get started for freeLet \(z\) be complex number with modulus 2 and argument \([(-2 \pi) / 3]\) then \(\mathrm{z}=\) (a) \(-1+\mathrm{i} \sqrt{3}\) (b) \([(-1+i \sqrt{3}) / 2]\) (c) \(-1-\mathrm{i} \sqrt{3}\) (d) \([(-1-i \sqrt{3}) / 2]\)
The complex numbers \(\sin x+i \cos 2 x\) and \(\cos x-i \sin 2 x\) are conjugate of each other for (a) \(\mathrm{x}=\mathrm{k} \pi, \mathrm{k} \in \mathrm{z}\) (b) \(x=0\) (c) \(\mathrm{x}=[\mathrm{k}+(1 / 2)] \pi, \mathrm{k} \in \mathrm{z}\) (d) no value of \(\mathrm{x}\)
If the imaginary part of \([(2 z-3) /(i z+1)]\) is \(-2\) then the locus of the point representing \(z\) in the complex plane is (a) a circle (b) a straight line (c) a parabola (d) an ellipse
\((1+i)(2+a i)+(2+3 i)(3+i)=x+i y, x, x y \in R\) and \(x=y\) then \(\mathrm{a}=\) (a) 5 (b) \(-4\) (c) \(-5\) (d) 4
The principal argument of \(-2 \sqrt{3}-2 \mathrm{i}\) is (a) \([(-5 \pi) / 6]\) (b) \([(5 \pi) / 6]\) (c) \([(-2 \pi) / 3]\) (d) \([(2 \pi) / 3]\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.