Chapter 2: Problem 101
If \(z=x+i y, x, y \in R\) and \(3 x+(3 x-y) i=4-6 i\) then \(z=\) (a) \((4 / 3)+\mathrm{i} 10\) (b) \((4 / 3)-\mathrm{i} 10\) (c) \([(-4) / 3]+\mathrm{i} 10\) (d) \([(-4) / 3]-\mathrm{i} 10\)
Chapter 2: Problem 101
If \(z=x+i y, x, y \in R\) and \(3 x+(3 x-y) i=4-6 i\) then \(z=\) (a) \((4 / 3)+\mathrm{i} 10\) (b) \((4 / 3)-\mathrm{i} 10\) (c) \([(-4) / 3]+\mathrm{i} 10\) (d) \([(-4) / 3]-\mathrm{i} 10\)
All the tools & learning materials you need for study success - in one app.
Get started for freeIf \(\mathrm{x}>1\) then the square roots of \(1-\sqrt{\left(\mathrm{x}^{2}-1\right) \mathrm{i}}\) (a) \(\pm[\sqrt{\\{}(\mathrm{x}+1) / 2\\}-\mathrm{i} \sqrt{\\{}(\mathrm{x}-1) / 2\\}]\) (b) \(\pm[\sqrt{\\{}(\mathrm{x}+1) / 2\\}+\mathrm{i} \sqrt{\\{}(\mathrm{x}-1) / 2\\}]\) (c) \(\pm[\sqrt{\\{}(\mathrm{x}-1) / 2\\}-\mathrm{i} \sqrt{\\{}(\mathrm{x}+1) / 2\\}]\) (d) \(\pm[\sqrt{\\{}(\mathrm{x}-1) / 2\\}+\mathrm{i} \sqrt{\\{}(\mathrm{x}+1) / 2\\}]\)
The value of \((-i)^{(-1)}=\) (a) \(-(\pi / 2)\) (b) \((\pi / 2)\) (c) \(\mathrm{e}^{-(\pi / 2)}\) (b) \(\mathrm{e}^{(\pi / 2)}\)
It \(\mathrm{z}^{2}+\mathrm{z}+1=0\) where \(\mathrm{z}\) is a complex number, then the value of \([z+(1 / z)]^{2}+\left[z^{2}+\left(1 / z^{2}\right)\right]^{2}+\left[z^{3}+\left(1 / z^{3}\right)\right]^{2}+\ldots\) \(+\left[z^{6}+\left(1 / z^{6}\right)\right]^{2}\) is (a) 18 (b) 54 (c) 6 (d) 12
The area of the triangle in the Arg and diagram formed by the Complex number \(\mathrm{z}\), iz and \(\mathrm{z}+\mathrm{iz}\) is (a) \(|z|^{2}\) (b) \((\sqrt{3} / 2)|z|^{2}\) (c) \((1 / 2)|\mathrm{z}|^{2}\) (d) \((3 / 2)|\mathrm{z}|^{2}\)
For any integer \(\mathrm{n}, \arg \left[(\sqrt{3}+\mathrm{i})^{4 n+1} /(1-\mathrm{i} \sqrt{3})^{4 \mathrm{n}}\right]=\) (a) \((\pi / 3)\) (b) \((\pi / 6)\) (c) \((2 \pi / 3)\) (d) \((5 \pi / 6)\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.