Chapter 2: Problem 103
\(\mathrm{i}^{1}+\mathrm{i}^{2}+\mathrm{i}^{3}+\mathrm{i}^{4}+\ldots \ldots \ldots \mathrm{i}^{1000}=\) (a) \(-1\) (b) 0 (c) 1 (d) None
Chapter 2: Problem 103
\(\mathrm{i}^{1}+\mathrm{i}^{2}+\mathrm{i}^{3}+\mathrm{i}^{4}+\ldots \ldots \ldots \mathrm{i}^{1000}=\) (a) \(-1\) (b) 0 (c) 1 (d) None
All the tools & learning materials you need for study success - in one app.
Get started for freeIf \(|z-4 / z|=2\) then the maximum value of \(|z|\) is (a) \(\sqrt{5}+1\) (b) 2 (c) \(2+\sqrt{2}\) (d) \(\overline{\sqrt{3}+1}\)
If \(Z=\cos (4 \pi / 7)+i \sin (4 \pi / 7)\) then \(\operatorname{Re}\left(z+z^{2}+z^{3}\right)=\) (a) \(\cos (\pi / 3)\) (b) \(\cos (2 \pi / 3)\) (c) \(\cos (\pi / 6)\) (d) \(\cos (5 \pi / 6)\)
If \(z=x-\) iy and \(z^{(1 / 3)}=p+i\) q then \(\left[\\{(x / p)+(y / q)\\} /\left(p^{2}+q^{2}\right)\right]\) (a) 2 (b) \(-1\) (c) 1 (d) \(-2\)
If \(z=\cos (\pi / 3)-i \sin (\pi / 3)\) then \(z^{2}-z+1=\) (a) \(-2 \mathrm{i}\) (b) 2 (c) 0 (d) \(-2\)
If \(z=\cos \theta+i \sin \theta\) then \(\arg \left(z^{2}+\underline{z}\right)=\) (a) \((3 \theta / 2)\) (b) \(\theta\) (c) \((\theta / 2)\) (d) \(3 \theta\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.