Chapter 2: Problem 103
\(\mathrm{i}^{1}+\mathrm{i}^{2}+\mathrm{i}^{3}+\mathrm{i}^{4}+\ldots \ldots \ldots \mathrm{i}^{1000}=\) (a) \(-1\) (b) 0 (c) 1 (d) None
Chapter 2: Problem 103
\(\mathrm{i}^{1}+\mathrm{i}^{2}+\mathrm{i}^{3}+\mathrm{i}^{4}+\ldots \ldots \ldots \mathrm{i}^{1000}=\) (a) \(-1\) (b) 0 (c) 1 (d) None
All the tools & learning materials you need for study success - in one app.
Get started for freeIf \(1, \mathrm{w}\) and \(\mathrm{w}^{2}\) are cube root of 1 then \((1-\mathrm{w})\left(1-\mathrm{w}^{2}\right)\) \(\left(1-\mathrm{w}^{4}\right)\left(1-\mathrm{w}^{8}\right)=\) (a) 16 (b) 8 (c) 9 (d) 64
The principal argument of \(-2 \sqrt{3}-2 \mathrm{i}\) is (a) \([(-5 \pi) / 6]\) (b) \([(5 \pi) / 6]\) (c) \([(-2 \pi) / 3]\) (d) \([(2 \pi) / 3]\)
If \(z_{1}, z_{2}\) are complex numbers and \(\left|z_{1}+z_{2}\right|=\left|z_{1}\right|+\left|z_{2}\right|\) then (a) \(\arg \left(\mathrm{z}_{1}\right)+\arg \left(\mathrm{z}_{2}\right)=0\) (b) \(\arg \left(\mathrm{z}_{1} \mathrm{z}_{2}\right)=0\) (c) \(\arg \left(\mathrm{z}_{1}\right)=\arg \left(\mathrm{z}_{2}\right)\) (d) None of these
If \(z=x-\) iy and \(z^{(1 / 3)}=p+i\) q then \(\left[\\{(x / p)+(y / q)\\} /\left(p^{2}+q^{2}\right)\right]\) (a) 2 (b) \(-1\) (c) 1 (d) \(-2\)
For complex numbers \(z_{1}, z_{2}\) if \(\left|z_{1}\right|=12\) and \(\left|z_{2}-3-4 i\right|=5\) then the minimum value \(\left|\mathrm{z}_{1}-\mathrm{z}_{2}\right|\) is (a) 0 (b) 2 (c) 7 (d) 17
What do you think about this solution?
We value your feedback to improve our textbook solutions.