Chapter 2: Problem 105
If \([\\{(1+i) x-2 i\\} /(3+i)]+[\\{(2-3 i) y+i\\} /(3-i)\\}]=i\) then \((\mathrm{x}, \mathrm{y})=\) (a) \((3,1)\) (b) \((3,-1)\) (c) \((-3,1)\) (d) \((-3,-1)\)
Chapter 2: Problem 105
If \([\\{(1+i) x-2 i\\} /(3+i)]+[\\{(2-3 i) y+i\\} /(3-i)\\}]=i\) then \((\mathrm{x}, \mathrm{y})=\) (a) \((3,1)\) (b) \((3,-1)\) (c) \((-3,1)\) (d) \((-3,-1)\)
All the tools & learning materials you need for study success - in one app.
Get started for freeThe value of \((-i)^{(-1)}=\) (a) \(-(\pi / 2)\) (b) \((\pi / 2)\) (c) \(\mathrm{e}^{-(\pi / 2)}\) (b) \(\mathrm{e}^{(\pi / 2)}\)
If \(\mathrm{x}=\mathrm{a}+\mathrm{b}, \mathrm{y}=\mathrm{a} \alpha+\mathrm{b} \beta\) and \(\mathrm{z}=\mathrm{a} \beta+\mathrm{b} \alpha\), Where \(\alpha, \beta \neq 1\) are cube roots of unity, then \(\mathrm{xyz}=\) (a) \(2\left(\mathrm{a}^{3}+\mathrm{b}^{3}\right)\) (b) \(2\left(a^{3}-b^{3}\right)\) (c) \(\mathrm{a}^{3}+\mathrm{b}^{3}\) (d) \(a^{3}-b^{3}\)
\(w \neq 1\) is cube root of 1 and \(\left(1+w^{2}\right)^{n}=\left(1+w^{4}\right)^{n}\) then the smallest positive value of \(\mathrm{n}\) is (a) 2 (b) 3 (c) 5 (d) 6
The principal argument of \(-2 \sqrt{3}-2 \mathrm{i}\) is (a) \([(-5 \pi) / 6]\) (b) \([(5 \pi) / 6]\) (c) \([(-2 \pi) / 3]\) (d) \([(2 \pi) / 3]\)
It \(\mathrm{z}^{2}+\mathrm{z}+1=0\) where \(\mathrm{z}\) is a complex number, then the value of \([z+(1 / z)]^{2}+\left[z^{2}+\left(1 / z^{2}\right)\right]^{2}+\left[z^{3}+\left(1 / z^{3}\right)\right]^{2}+\ldots\) \(+\left[z^{6}+\left(1 / z^{6}\right)\right]^{2}\) is (a) 18 (b) 54 (c) 6 (d) 12
What do you think about this solution?
We value your feedback to improve our textbook solutions.