Chapter 2: Problem 105
If \([\\{(1+i) x-2 i\\} /(3+i)]+[\\{(2-3 i) y+i\\} /(3-i)\\}]=i\) then \((\mathrm{x}, \mathrm{y})=\) (a) \((3,1)\) (b) \((3,-1)\) (c) \((-3,1)\) (d) \((-3,-1)\)
Chapter 2: Problem 105
If \([\\{(1+i) x-2 i\\} /(3+i)]+[\\{(2-3 i) y+i\\} /(3-i)\\}]=i\) then \((\mathrm{x}, \mathrm{y})=\) (a) \((3,1)\) (b) \((3,-1)\) (c) \((-3,1)\) (d) \((-3,-1)\)
All the tools & learning materials you need for study success - in one app.
Get started for freeIf \(\mathrm{a}=\cos (2 \pi / 7)+\mathrm{i} \sin (2 \pi / 7)\) then the quadratic equation whose roots are \(\alpha=\mathrm{a}+\mathrm{a}^{2}+\mathrm{a}^{4}\) and \(\beta=\mathrm{a}^{3}+\mathrm{a}^{5}+\mathrm{a}^{6}\) is (a) \(x^{2}-x+2\) (b) \(x^{2}+x-2\) (c) \(x^{2}-x-2\) (d) \(x^{2}+x+2\)
Let \(z=[(3+2 i \sin \theta) /(1-2 i \sin \theta)]\) and \(z=\underline{z}\) then \(\theta=\) (a) \((2 \mathrm{k}+1)(\pi / 2), \mathrm{k} \in \mathrm{z}\) (b) \(2 \mathrm{k} \pi, \mathrm{k} \overline{\in \mathrm{z}}\) (c) \(k \pi, k \in z\) (d) None
If \(z=-1\) then \(\arg z^{(2 / 3)}=\) (a) \((\pi / 3), 2 \pi\) (b) \(0,(2 \pi / 3),[(-2 \pi) / 3]\) (c) \([(10 \pi) / 3]\) (d) \(\pi, 2 \pi\)
If \(1, \mathrm{w}\) and \(\mathrm{w}^{2}\) are cube root of 1 then \((1-\mathrm{w})\left(1-\mathrm{w}^{2}\right)\) \(\left(1-\mathrm{w}^{4}\right)\left(1-\mathrm{w}^{8}\right)=\) (a) 16 (b) 8 (c) 9 (d) 64
The complex numbers \(\sin x+i \cos 2 x\) and \(\cos x-i \sin 2 x\) are conjugate of each other for (a) \(\mathrm{x}=\mathrm{k} \pi, \mathrm{k} \in \mathrm{z}\) (b) \(x=0\) (c) \(\mathrm{x}=[\mathrm{k}+(1 / 2)] \pi, \mathrm{k} \in \mathrm{z}\) (d) no value of \(\mathrm{x}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.