Chapter 2: Problem 106
If \(Z=[(4+3 i) /(5-3 i)]\) then \(Z^{-1}=\) (a) \((11 / 25)-(27 / 25) \mathrm{i}\) (b) \([(-11) / 25)]-(27 / 25) \mathrm{i}\) (c) \([(-11) / 25)]+(27 / 25) \mathrm{i}\) (d) \((11 / 25)+(27 / 25) \mathrm{i}\)
Chapter 2: Problem 106
If \(Z=[(4+3 i) /(5-3 i)]\) then \(Z^{-1}=\) (a) \((11 / 25)-(27 / 25) \mathrm{i}\) (b) \([(-11) / 25)]-(27 / 25) \mathrm{i}\) (c) \([(-11) / 25)]+(27 / 25) \mathrm{i}\) (d) \((11 / 25)+(27 / 25) \mathrm{i}\)
All the tools & learning materials you need for study success - in one app.
Get started for free
If \(Z=\cos (4 \pi / 7)+i \sin (4 \pi / 7)\) then \(\operatorname{Re}\left(z+z^{2}+z^{3}\right)=\) (a) \(\cos (\pi / 3)\) (b) \(\cos (2 \pi / 3)\) (c) \(\cos (\pi / 6)\) (d) \(\cos (5 \pi / 6)\)
\(\mathrm{A}\left(\mathrm{z}_{1}\right), \mathrm{B}\left(\mathrm{z}_{2}\right)\) and \(\mathrm{C}\left(\mathrm{z}_{3}\right)\) are vertices of \(\triangle \mathrm{ABC}\) where \(\mathrm{m}\) \(\angle \mathrm{C}=(\pi / 2)\) and \(\mathrm{AC}=\mathrm{BC}, \mathrm{z}_{1}, \mathrm{z}_{2}, \mathrm{z}_{3}\) are complex number if \(\left(\mathrm{z}_{1}-\mathrm{z}_{2}\right)^{2}=\mathrm{k}\left(\mathrm{z}_{1}-\mathrm{z}_{3}\right)\left(\mathrm{z}_{3}-\mathrm{z}_{2}\right)\) then \(\mathrm{k}=\) (a) 1 (b) 2 (c) 4 (d) non of these
If \(\mathrm{w}=[\mathrm{z} /\\{\mathrm{z}-(1 / 3)\\}] \mathrm{i}\) and \(|\mathrm{w}|=1\) then \(\mathrm{z}\) lies on (a) circle (b) an ellipse (c) Parabola (d) a straight line
If \(\mathrm{a}=\cos (2 \pi / 7)+\mathrm{i} \sin (2 \pi / 7)\) then the quadratic equation whose roots are \(\alpha=\mathrm{a}+\mathrm{a}^{2}+\mathrm{a}^{4}\) and \(\beta=\mathrm{a}^{3}+\mathrm{a}^{5}+\mathrm{a}^{6}\) is (a) \(x^{2}-x+2\) (b) \(x^{2}+x-2\) (c) \(x^{2}-x-2\) (d) \(x^{2}+x+2\)
For any integer \(\mathrm{n}, \arg \left[(\sqrt{3}+\mathrm{i})^{4 n+1} /(1-\mathrm{i} \sqrt{3})^{4 \mathrm{n}}\right]=\) (a) \((\pi / 3)\) (b) \((\pi / 6)\) (c) \((2 \pi / 3)\) (d) \((5 \pi / 6)\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.