Chapter 2: Problem 106
If \(Z=[(4+3 i) /(5-3 i)]\) then \(Z^{-1}=\) (a) \((11 / 25)-(27 / 25) \mathrm{i}\) (b) \([(-11) / 25)]-(27 / 25) \mathrm{i}\) (c) \([(-11) / 25)]+(27 / 25) \mathrm{i}\) (d) \((11 / 25)+(27 / 25) \mathrm{i}\)
Chapter 2: Problem 106
If \(Z=[(4+3 i) /(5-3 i)]\) then \(Z^{-1}=\) (a) \((11 / 25)-(27 / 25) \mathrm{i}\) (b) \([(-11) / 25)]-(27 / 25) \mathrm{i}\) (c) \([(-11) / 25)]+(27 / 25) \mathrm{i}\) (d) \((11 / 25)+(27 / 25) \mathrm{i}\)
All the tools & learning materials you need for study success - in one app.
Get started for freeIf \(\mathrm{z}_{1}=2-\mathrm{i}\) and \(\mathrm{z}_{2}=1+\mathrm{i}\) then \(\left|\left[\left(z_{1}-z_{2}+1\right) /\left(z_{1}+z_{2}+i\right)\right]\right|=\) (a) \(\sqrt{(5 / 3)}\) (b) \(\sqrt{(3 / 5)}\) (c) \(\sqrt{(4 / 5)}\) (d) \(\sqrt{(5 / 4)}\)
lt \(z\) be a complex number and \(|z+3|<8 .\) Then the value of \(|z-2|\) lies in (a) \([-2,13]\) (b) \([0,13]\) (c) \([2,13]\) (d) \([-13,2]\)
If \(\mathrm{f}(\mathrm{x})=4 \mathrm{x}^{5}+5 \mathrm{x}^{4}-8 \mathrm{x}^{3}+5 \mathrm{x}^{2} 4 \mathrm{x}-34 \mathrm{i}\) and \(\mathrm{f}[(-1+\sqrt{3} \mathrm{i}) / 2]=\mathrm{a}+\mathrm{ib}\) then \(\mathrm{a}: \mathrm{b}=\) (a) \(1: 2\) (b) \(-2: 1\) (c) \(17: 1\) (d) \(-17: 1\)
The small positive integer ' \(n\) ' for which \((1+i)^{2 n}=(1-i)^{2 n}\) is \(\begin{array}{lll}\text { (a) } 4 & \text { (b) } 8 & \text { (c) } 2\end{array}\) (d) 12
The number of complex numbers \(z\) such that \(|z-1|\) \(=|z+1|=|z-i|\) equal (a) 0 (b) 1 (c) 2 (d) \(\infty\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.