Chapter 2: Problem 108
lt \(z\) be a complex number and \(|z+3|<8 .\) Then the value of \(|z-2|\) lies in (a) \([-2,13]\) (b) \([0,13]\) (c) \([2,13]\) (d) \([-13,2]\)
Chapter 2: Problem 108
lt \(z\) be a complex number and \(|z+3|<8 .\) Then the value of \(|z-2|\) lies in (a) \([-2,13]\) (b) \([0,13]\) (c) \([2,13]\) (d) \([-13,2]\)
All the tools & learning materials you need for study success - in one app.
Get started for freeIf \(z=x+y\) i and \(|3 z|=|z-4|\) then \(x^{2}+y^{2}+x=\) (a) 1 (b) \(-1\) (c) 2 (d) \(-2\)
If \(z=\cos (\pi / 3)-i \sin (\pi / 3)\) then \(z^{2}-z+1=\) (a) \(-2 \mathrm{i}\) (b) 2 (c) 0 (d) \(-2\)
The small positive integer ' \(n\) ' for which \((1+i)^{2 n}=(1-i)^{2 n}\) is \(\begin{array}{lll}\text { (a) } 4 & \text { (b) } 8 & \text { (c) } 2\end{array}\) (d) 12
\((1+i)(2+a i)+(2+3 i)(3+i)=x+i y, x, x y \in R\) and \(x=y\) then \(\mathrm{a}=\) (a) 5 (b) \(-4\) (c) \(-5\) (d) 4
\(4 \sqrt{(-8+8 \sqrt{3} i)}=\) (a) \(\pm(1+\sqrt{3 i})\) (b) \(\pm(2+2 \sqrt{3 i})\) (c) \(\pm(\sqrt{3}+\mathrm{i})\) (d) \(\pm(2-2 \sqrt{3} \mathrm{i})\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.